(101)輔仁大學碩士班招生考試試題

考試日期:101年3月9日第 章節

本試題共 一 頁 (本頁為第一 頁)

科目: 線性代數

系所組: 數學

1. (40 Points) Prove each of the following statements.

- (a) If $\{v_1, v_2, \ldots, v_n\}$ is a basis for a vector space V, then $\{v_1 + v_2, v_2 + v_3, \ldots, v_{n-1} + v_n, v_n\}$ is also a basis for V.
- (b) Suppose that S_1 and S_2 be subspaces for a vector space V such that $S_1 \subseteq S_2$. Then $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$.
- (c) Let T be an invertible linear operator on a finite-dimensional vector space V. Then λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1}
- (d) Let T be a linear operator on an inner product space V with the adjoint T^* . If W is a T-invariant subspace of V, then W^{\perp} , the orthogonal complement of W, is T^* -invariant.
- (e) Let T be a linear operator on a complex inner product space V. If T is self-adjoint, then the inner product $\langle T(x), x \rangle$ is real for all x in V.
- 2. (20 Points) Let $T: \mathbb{R}^4 \to \mathbb{R}^2$ be defined by

$$T(x_1, x_2, x_3, x_4) = (x_1 + 2x_2 + x_3 + x_4, x_2 - x_3 + x_4).$$

- (a) Let W be the null space of T. Find a basis for W.
- (b) Find a basis for the orthogonal complement of W.
- (c) Is T onto? Why?
- (d) If U is any linear transformation defined on \mathbb{R}^2 such that UT is onto, show that U is onto.
- 3. (16 Points) Let V be an inner product space. Denote $\langle \cdot, \cdot \rangle$ the inner product on V and define $||x|| = \langle x, x \rangle^{1/2}$ for $x \in V$. If $S = \{v_1, v_2, \dots, v_n\}$ is an orthonormal subset of V, show that for each $x \in V$ the following Bessel's inequality holds:

$$||x||^2 \ge \sum_{i=1}^n |\langle x, v_i \rangle|^2$$

4. (24 Points) Let H be the vector space of continuous complex-valued functions defined on the interval $[0, 2\pi]$ endowed with the inner product

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} dt, \qquad f, g \in H.$$

- (a) Let $f_n(t) = e^{int}$, where $0 \le t \le 2\pi$ and n is an integer. Show that $S = \{f_n : n \in \mathbf{Z}\}$ is an orthonormal subset of H.
- (b) Apply f(t) = t in H for $x \in V$ in the Bessel's inequality and show that

$$\frac{\pi^2}{6} \ge \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

※ 注意:1.考生須在「彌封答案卷」上作答。

- 2.本試題紙空白部份可當稿紙使用。
- 3.考生於作答時可否使用計算機、法典、字典或其他資料或工具,以簡章之規定為準。