國立高雄大學 101 學年度研究所碩士班招生考試試題

川口・北州劫力組	系所:化學工程及材料工程學系					
村日・村村然ノ字	(乙組)	是否使用計算機:是				
考試时间・100分鐘	本科原始成績:100分					

1. Solid A-B alloys are regular in their thermodynamic behavior. The molar enthalpies of formation of some specific A-B alloys, ΔH^{M} , at 500°C are listed as a function of composition of the component A, X_{A} , as follows. (10%)

X _A	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
ΔH^{M} ,	-355	-655	-910	-1120	-1230	-1240	-1130	-860	-460
(J/mole)									

- a. Calculate the integral molar Gibbs free energy change due to the mixing of components A and B at $X_A = 0.3$.
- b. What is the activity of component A at $X_A = 0.3$?
- 2. Tin obeys Henry's law in dilute liquid solutions of Sn and Cd and the Henrian activity coefficient of Sn, γ_{Sn}^{0} , varies with temperature as

$$\ln \gamma_{Sn}^0 = -840/T + 1.58$$

Calculate the change in temperature when 1 mole of liquid Sn and 99 moles of liquid Cd are mixed in an adiabatic enclosure. The molar constant pressure heat capacity of the alloy formed is 29.5 J/K. (10%)

3. A real gas is described by Van der Waals equation $\left[p + \frac{a}{v^2}\right](v-b) = RT$, where *p* is pressure, *v* is molar volume, *T* is temperature, *R* is the gas constant, and both *a* and *b* are positive constants. Does the volume affect the internal free energy and the heat capacity at a fixed

temperature? Please debate your answers in quantitative derivations. (20%)

4. CaO and MgO form a simple eutectic system with limited ranges of solid solubility. The eutectic temperature is 2643 K. Assuming that the solutes in the two solid solutions obey Henry's law with γ_{CaO}^0 in MgO = 12.88 and γ_{MgO}^0 in CaO = 6.23 at 2573 K, calculate the solubility of CaO in MgO and the solubility of MgO in CaO at 2573 K. (10 %)

國立高雄大學 101 學年度研究所碩士班招生考試試題

11日・11-11日 山田	系所:化學工程及材料工程學系					
村日・村村熱力字	(乙組)	是否使用計算機:是				
考試时间・100分鲤	本科原始成績:100分					

5. By measuring the EMF's of cells of the type

 $Ni_{(s)} |NiO_{(s)}| CaO-ZrO_2 | Cu_{(l)}$ containing dissolved oxygen

It has been established that e_0^o in liquid copper at 1363K is -0.16 and that the standard Gibbs

free energy change for

 $\frac{1}{2}O_{2(g)} = [O]_{1 \text{ wt\% in } Cu}, \quad \Delta G^{\circ} = -74,105 + 10.76T \text{ J}$ 2Ni + O₂= 2NiO, $\Delta G^{\circ} = -471,200 + 172T \text{ J}$ 2Cu₍₁₎ + $\frac{1}{2}O_{2} = Cu_{2}O_{(s)}, \quad \Delta G^{\circ} = -188,300 + 88.48T \text{ J}$

If the EMF of such a cell is 0.222 volts at 1363K, calculate,

- a. The activity of oxygen in the liquid copper cathode with respect to a standard state of oxygen gas at 1 atm pressure. (5%)
- b. The activity of Cu_2O in the cathode metal with respect to copper-saturated pure solid Cu_2O . (5%)
- c. The weight percentage of oxygen dissolved in the copper cathode. (5%)
- d. The maximum solubility of oxygen in liquid copper at 1363 K. (5%)
- 6. Consider the metal Au in the initial state T = 298K, P = 1 atm.
 - a. What pressure (in atm) would you have to apply to Au at 298K in order to decrease its molar entropy by 1 J/K? (5%)
 - b. By how much (in K) would you have to change the temperature of Au at constant pressure in order to decrease its molar entropy a J/K? (5%)

Given data:

heat capacity $C_{p,Au(s)} = 23.7 + 5.19 \times 10^{-3} T \text{ J/K.mole}$

thermal expansion coefficient = 4.26×10^{-5} (K)⁻¹, isothermal compressibility = 5×10^{-5} (atm)⁻¹ density = 19.3 g/cm⁻³, molecular weight: 197 g/mole, entropy at 298K = 47.36 J/K.mole enthalpy of melting $\Delta H_m = 12800$ J/mole

- 7. Please explain the following terms:
 - a. Chemical potential (4%), b. Fugacity (4%)

c. Spinodal curve (6%), d. Intensive properties (3%), e. Configuration entropy (3%)

 $\begin{array}{ll} ln298 = 5.697, & ln3 = 1.099, & ln7 = 1.946, & ln10 = 2.303 \\ e^{-0.397} = 0.672 \,, & e^{-7.56} = 5.2 \times 10^{-4}, & e^{-20.89} = 8.4 \times 10^{-10}, & e^{-11.94} = 6.47 \times 10^{-6} \end{array}$

背面尚有試題