科目：輸送現象與單元操作考試時間：100分鐘

系所：化學工程及材料工程學系
（甲組）
本科原始成績：100分

1．（ 40 pts ）Please answer the following questions：
（a）Determine the drag force on a gas bubble moving in a liquid at large Reynolds number．（6 pts）
（b）Please derive the heat transfer in a parallel－flow double－pipe heat exchanger and then explain the usage of mean，average and logarithmic mean temperature differences．（ 10 pts ）
（c）Please find the dimensionless numbers in mass transfer by Buckingham method under forced and natural convection．（10 pts）
（d）What are the physical meanings of number of transfer units（NTU）in heat exchanger and gas absorption？（ 8 pts ）
（e）Please explain three types of plate efficiency can be employed in distillation and their applications．（ 6 pts ）

2．（ 15 pts ）Consider the motion of a fluid between two in finite coaxial cylinders with radii $\mathrm{R}_{1}, \mathrm{R}_{2}$ $\left(R_{2}>R_{1}\right)$ ，rotating about their axis with angular velocities Ω_{1}, Ω_{2} ．Please find the velocity distribution，pressure distribution and the moment of frictional forces acting on the cylinders and also list the assumptions．

3．（15 pts）Please derive the fin efficiencies of（a）straight rectangular fins；（b）straight triangular fins；（c）pin fins of rectangular profile and list your assumptions．

4．（ 10 pts ）A person feels very comfortable in light clothing when the thermostat is set at $22^{\circ} \mathrm{C}$ and the average temperature of the surrounding surface is also $22^{\circ} \mathrm{C}$ ．During a cold front，the average mean radiation temperature drops to $13.6^{\circ} \mathrm{C}$ in Kaohsiung．What will the indoor air temperature be raised to maintain the same level of comfort in the same clothing？（Hint：The emissivity of the person is 0.93 ．The convection heat transfer coefficient from the body is $\mathrm{h}_{\text {conv }}=3.2 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$ ．）

5．（ 10 pts ）A drop of water，jetting from a standard $20 \mu \mathrm{~m}$ orifice，at a velocity of $230 \mathrm{~cm} / \mathrm{s}$ through dry，still air at 1 atm pressure without internal circulation．The vapor pressure at room temperature is 0.0247 atm ．Please estimate the instantaneous rate of evaporation from the drop，the diameter decrease and the distance the drop evaporates completely．（Hint： $\mathrm{Nu}_{m}=2+0.6 \mathrm{Re}^{1 / 2} \operatorname{Pr}^{1 / 3}$ ）

6．（10 pts）A natural phenol is to be extracted from a dilute aqueous solution using a oil with a distribution coefficient of 5．3．Please design an extractor to achieve the highest recovery，lowest oil flow rate and ideal stages required．

