科目：化工熱力學與化學反應 系所：化學工程及材料工程學系
工程
考試時間：100分鐘
（甲組）
本科原始成績：100分

是否使用計算機：是

Table：Values of the universal gas constant

$$
\begin{aligned}
\mathrm{R} & =8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~m}^{3} \mathrm{~Pa} \mathrm{~mol} \\
& \mathrm{~K}^{-1} \mathrm{~K}^{-1} \\
& =83.14 \mathrm{~cm}^{3} \mathrm{bar} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8314 \mathrm{~cm}^{3} \mathrm{kPa} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =82.06 \mathrm{~cm}^{3}(\mathrm{~atm}) \mathrm{mol}^{-1} \mathrm{~K}^{-1}=62356 \mathrm{~cm}^{3}(\mathrm{torr}) \mathrm{mol}^{-1} \mathrm{~K}^{-1} \\
& =1.987(\mathrm{cal}) \mathrm{mol}^{-1} \mathrm{~K}^{-1}=1.986(\mathrm{Btu})(\mathrm{lb} \text { mole })^{-1}(\mathrm{R})^{-1} \\
& =0.7302(\mathrm{ft})^{3}(\mathrm{~atm})(\mathrm{lb} \mathrm{~mol})^{-1}(\mathrm{R})^{-1}=10.73(\mathrm{ft})^{3}(\mathrm{psia})(\mathrm{lb} \mathrm{~mol})^{-1}(\mathrm{R})^{-1} \\
& =1545(\mathrm{ft})\left(\mathrm{lb}_{\mathrm{f}}\right)(\mathrm{lb} \mathrm{~mol})^{-1}(\mathrm{R})^{-1}
\end{aligned}
$$

1．The volume change of mixing $\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$ for the system ethanol（1）／methyl butyl ether（2）at 25 ${ }^{\circ} \mathrm{C}$ is given by the equation：

$$
\Delta V=x_{1} x_{2}\left[-1.026+0.220\left(x_{1}-x_{2}\right)\right]
$$

Given that $\mathrm{V}_{1}=58.63 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ and $\mathrm{V}_{2}=118.46 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ ，what volume of mixture is formed when $750 \mathrm{~cm}^{3}$ of pure species 1 is mixed with $1500 \mathrm{~cm}^{3}$ of pure species 2 at $25^{\circ} \mathrm{C}$ ？What would be the volume if an ideal solution were formed？（20\％）
2．Fifty $\mathrm{mol} \mathrm{s}^{-1}$ of enriched air（ $50 \mathrm{~mol} \% \mathrm{~N}_{2}, 50 \mathrm{~mol} \% \mathrm{O}_{2}$ ）are produced by continuously combining air（ $79 \mathrm{~mol} \% \mathrm{~N}_{2}, 21 \mathrm{~mol} \% \mathrm{O}_{2}$ ）with a stream of pure oxygen．All streams are at the constant conditions $\mathrm{T}=25^{\circ} \mathrm{C}$ and $\mathrm{P}=1.2 \mathrm{~atm}$ ．There are no moving parts．
（a）Determine the rates of air and oxygen（ $\mathrm{mol} \mathrm{s}^{-1}$ ）．（7\％）
（b）What is the rate of heat transfer for the process？（7\％）
（c）What is the rate of entropy generation $\mathrm{S}_{\mathrm{G}}\left(\mathrm{WK}^{-1}\right)$ ？（7\％）
3．Two kmol hr^{-1} of liquid n－octane（species 1 ）are continuously mixed with four $\mathrm{kmol} \mathrm{hr}^{-1}$ of liquid iso－octane（species 2）．The mixing process occurs at constant T and P ；mechanical power requirements are negligible．（20\％）
（a）Use an energy balance to determine the rate of heat transfer．
（b）Use an entropy balance to determine the rate of entropy generation $\left(\mathrm{WK}^{-1}\right)$ ．
State and justify all assumptions．
4．The kinetics of the aqueous phase decomposition of A is investigated in two mixed reactors in series，the second having twice the volume of the first reactor．At steady state with a feed concentration of $1 \mathrm{~mol} \mathrm{~A} / l i t e r$ and mean residence time of 96 sec in the first reactor，the concentration in the first reactor is $0.5 \mathrm{~mol} \mathrm{~A} / l i t e r$ and in the second is $0.25 \mathrm{~mol} \mathrm{~A} /$ liter．Find the kinetic equation for the decomposition．（19\％）

國立高雄大學 101 學年度研究所碩士班招生考試試題

科目：化工熱力學與化學反應 系所：化學工程及材料工程學系
工程
考試時間：100分鐘
本科原始成績：100 分

5．A homogeneous liquid phase reaction

$$
\mathrm{A} \rightarrow \mathrm{R}, \quad-r_{A}=k C_{A}^{2}
$$

take place with 50% conversion in a mixed reactor．
（a）What will be the conversion if this reactor is replaced by one 6 times as large－all else remaining unchanged？（10\％）
（b）What will be the conversion if the original reactor is replaced by a plug flow reactor of equal size－all else remaining unchanged？（10\％）

