國立高雄大學 101 學年度研究所碩士班招生考試試題

科目:微電子學 系所:

考試時間:100分鐘 電機工程學系(微電子組) 是否使用計算機:是

本科原始成績:100分 本科原始成績:100分

注意:小訊號分析時未將電晶體小訊號模型於解答中呈現者,將不予計分。

1. (a) Analyze and obtain the *transfer function* and *gain sensitivity* of the ideal feedback system in Fig.1(a). (4%+6%)

- (b) For ideal operational amplifier, describe the *concept of virtual ground*. (4%)
- (c). Fig.1(b) is the ideal shunt-series feedback topology, analyze and determine circuit characterizations including *closed-loop gain*, *input resistance* and *output resistance*. (10%)
- (d). Describe what is meant by Nyquist stability criterion for a feedback amplifier. (4%)

- 2. (a) Describe what is meant by (a) power conversion efficiency and (b) crossover distortion for power amplifier. (2%+2%)
 - (b). Fig.2 is a complementary push-pull output stage. If the base-emitter turn-on voltages are zero, describe and determine the conversion efficiency. And, when $V_p=V_{CC}$, the maximum possible conversion efficiency. (12%)
- 3. Fig.3 is the MOSFET cascode current mirror. Assume $I_{REF} = I_0$ and $\lambda \neq 0$. Determine the output resistance at the drain of M4. (5%)

國立高雄大學 101 學年度研究所碩士班招生考試試題

科目:微電子學 系所:

考試時間:100分鐘 電機工程學系(微電子組) 是否使用計算機:是

本科原始成績:100分鐘 本科原始成績:100分

4. Fig.4 is a basic MOSFET differential pair configuration. Assume the transistors are matched, with $\lambda = 0$ for each transistor and that the constant-current source is represented by a finite output resistance R_0 for small-signal analysis. ($g_{m1} = g_{m2} = g_m$, $k_{M1} = k_{M2} = k_n$)

(a) Determine differential-mode gain, common-mode gain and common-mode rejection ratio. (12%)

(b) If
$$V^+ = 3V$$
, $V^- = -3V$, $I_Q = 0.2mA$, $R_D = 15k\Omega$, $V_{TN} = 0.4V$, and $k_n^- = \frac{1}{2}\mu_n C_{ox} = 100 \,\mu A/V^2$.

Determine the width-to-length ratio of the transistors such that the one-sided differential voltage gain is $A_d = 15$. (4%)

- 5. (a) Describe *Early voltage effect* (Base-width modulation effect) by the steady-state minority carrier concentrations for a *npn* transistor biased in the active mode. (3%)
 - (b) In Fig.5(a), assuming uniform doping in each region, determine the *build-in potential barrier* in terms of N_A and N_D . (5%)
 - (c). In Fig.5(b), pn junction is biased in V_{bias} , assuming uniform doping in each region and $N_A > N_D$, determine junction built-in voltage (V_j) in terms of N_A and N_D . (8%)
- 6. (a).Plot the *inverting operational amplifier* and *non-inverting operational amplifier*, determine *voltage gain*, *input impedance* and *output impedance* when operational amplifier is ideal. (6%+6%)
 - (b). Determine the *voltage gain* $\frac{v_0}{v_I}$ in Fig.6. (3%)
 - (c). Using the result of part (b), at what frequency is the magnitude of the gain a factor of $\sqrt{2}$ less than the high-frequency limiting value? (4%)

國立高雄大學 101 學年度研究所碩士班招生考試試題

系所:

科目:微電子學 考試時間:100 分鐘	^{东州·} 電機工程學系(微電子組) 本科原始成績:100 分	是否使用計算機:是