國立高雄大學 101 學年度研究所碩士班招生考試試題

身份別:一般生、在職生 是否使用計算機:否

声武时间·100 分鐘 本科原始成績:100 分

Notations.

 I_n : the identity matrix of size n.

 $M_{n\times m}(\mathbb{R})$: the set of $n\times m$ real matrices.

1 (5) Find all scalars s, if any exist, such that [1,0,1], [2,s,3], [1,-s,0] are independent.

2 Let $A, B \in M_{n \times n}(\mathbb{R})$

a. (10) Prove that $rank(AB) \leq rank(A)$.

b. (5) Give an example where rank(AB) < rank(A).

3 (10)Let u = [-1, 2] and v = [3, -5] be in \mathbb{R}^2 , and let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that T(u) = [-2, 1, 0] and T(v) = [5, -7, 1]. Find a formula for $T([x_1, x_2])$.

4 Let

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ -8 & 4 & -6 \\ 8 & 1 & 9 \end{array} \right].$$

a. (10) Find the eigenvalues and eigenvectors of A.

b. (5) Find the eigenvalues and eigenvectors of $3A^3 + 2A^2 + A + I_3$.

5 (10) Find a formula for the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that reflects vectors in the line y = mx, where $m \in \mathbb{R}$.

6 Let $W = \text{span}\{[1, 0, 1], [3, 1, 2]\}.$

a. (5) Find an orthonormal basis for W.

b. (10) Find the matrix that projects vectors in \mathbb{R}^3 on W.

7 (10) Find the least-squares fit to the data points, [0,0], [1,2], [2,3], [3,8], by a linear function $f(x) = r_0 + r_1 x$.

8 (10) Find the general solution of the linear differential equation

$$x' = x + y$$
$$y' = 3x - y$$

9 (10) Let W_1 and W_2 be subspaces of a vector space V. Prove that $W_1 \cap W_2$ is a subspace of V.