科目:普通化學

系所:應用化學系

考試時間:100分鐘 本科原始成績:100分 是否使用計算機:是

hydrogen 1	[-		15	50	551	ā	120	ē	15)	**	7.7	:=	ēĒ.	765	850	1.5		helium 2
H																		He 4.0026
lithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Ľi	Be												В	C	N	0	F	Ne
6.941 sodium	9.0122 magnesium												10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20,180 argon
11	12												13	14	15	16	17	18
Na 22,990	Mg 24,305												AI 26.982	Si 28.086	P 30,974	S 32,065	CI 35,453	Ar 39,948
potassium	calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54,938 technetium	55.845 ruthenium	58,933 rhodium	58,693 palladium	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.468 caesium	87.62 barium		88.906 lutetium	91,224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 ununguadium	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db		Bh	Hs	Mt	Hun	Hom	Uub		Uuq				
To Joseph Co.	0.0000000000000000000000000000000000000	^ ^	120,000			Sg	100000000000000000000000000000000000000		100000000000000000000000000000000000000	oun	ouu							
[223]	[226]		[262]	[261]	[262]	[266]	[264]	269	[268]	[271]	[272]	[277]		[289]	I			

*Lanthanide series

* * Actinide series

lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
l a	_	D.	NA	15080			2	Th	Div	Ца	E	T	Vh
La	Ce	Pr	Na	Pm	Sm	Eu	Ga	g	Dy	ПО		TM	TD
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
۸۵	Th	Da	11	Nρ	Dii	Λm	Cm	DL	Cf	Fc	Em	Ma	Ma
Ac	111	Pa	U	ИР	гu	Am	CIII	DN	G	L 2	ГШ	IVIU	INO
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

系所:應用化學系 科目:普通化學 是否使用計算機:是

考試時間:100分鐘 本科原始成績:100分

Mass of electron: 9.11 x 10⁻³¹kg, Mass of proton=1.67 x 10⁻²⁷kg, R=0.08206 L atm mol⁻¹K⁻¹, 8.3145 J K⁻¹ mol⁻¹, $V_{sphere} = 4/3\pi r^3$,

 $h = 6.626 \times 10^{-34} \text{ J s or } 6.626 \times 10^{-34} \text{ kg m}^2/\text{s}$, Neutron mass=1.67 x 10^{-27} kg ; $\lambda = h/mv$; $\Delta E = \text{energy level of}$ n_{final} energy level n_{initial} ; $E = -2.178 \times 10^{-18} \text{ J} (Z^2/\text{n}^2)$; $C = v \lambda$; $E = hc/\lambda$; $KE_{\text{electron}} = 1/2 \text{ mv}^2$; $\Delta x \cdot \Delta p \ge \hbar/2$ \hbar =h/2 π : F=96485 C, Cr mass=52.00 g/mol, Electron mass= 9.10939 x 10 $^{-31}$ kg

Directions: Select the best answer.

- 1. Which of the following is **not** determined by the principal quantum number, n, of the electron in a hydrogen atom?
- a) the energy of the electron
- b) the minimum wavelength of the light needed to remove the electron from the atom.
- c) the size of the corresponding atomic orbital(s)
- d) the shape of the corresponding atomic orbital(s)
- e) All of the above are determined by n.
- **2.** Which of the following statements is *true* about *p*-type silicon?
- a) It is produced by doping Si with P or As.
- b) Electrons are the mobile charge carriers.
- c) It does not conduct electricity as well as pure Si.
- d) All are true.
- e) None is true.
- 3. For which of the following compound(s) are *cis* and *trans* isomers possible?
- a) 2,3-dimethyl-2-butene
- b) 3-methyl-2-pentene
- c) 4,4-dimethylcyclohexanol
- d) ortho-chlorotoluene
- e) All can exhibit *cis/trans* isomers.
- **4.** How many electrons can be described by the quantum numbers n = 3, l = 3, $m_l = 1$?
- a) 0
- b) 2
- c) 6
- d) 10
- e) 14
- The net number of face-centered atoms contained in a face-centered cubic unit cell is
- a) 1
- b) 3
- c) 4
- d) 6
- e) none of these

是否使用計算機:是

系所:應用化學系

本科原始成績:100分

科目:普通化學

考試時間:100分鐘

Which of the following molecules has a dipole moment? a) CF₄ b) SF₄ c) XeF₄ d) All of the above have a dipole moment. e) None of the above (a-c) has a dipole moment. The first electron affinity value for oxygen is and the second electron affinity value is a) unfavorable (endothermic), favorable (exothermic) b) unfavorable (endothermic), unfavorable (endothermic) c) favorable (exothermic), favorable (exothermic) d) favorable (exothermic), unfavorable (endothermic) e) More information is needed. How many electrons are transferred in the following reaction? $2Cr_2O_7^{2-} + 14H^+ + 6Cl^- \rightarrow 2Cr^{3+} + 3Cl_2 + 7H_2O$ c) 6 a) 2 b) 4 d) 8 e) none of these **9.** In which of the following cases must *E* be equal to zero? a) In any cell at equilibrium. b) In a concentration cell. c) E can never be equal to zero. d) Choices a and b are both correct. e) Choices a, b and c are all correct. **10.** For a spontaneous endothermic process, which conditions must hold? 1) $w_{max} = \Delta G$ 2) $\Delta S_{\text{surr}} > 0$ 4) ΔS is positive. 3) ΔS cannot be negative. a) All are true. b) None are true. c) 1 and 3 d) 1, 2, and 4 e) 3 and 4 What is the most abundant element found in the human body? a) carbon b) hydrogen c) calcium d) oxygen e) water 12. What is the advantage of a nickel-cadmium or a lead-acid battery? a) They have high output voltages b) They are rechargeable c) They provide high charge to mass ratios d) They are easily disposed of

	系所:應用化學 本科原始成績:	是 不
e) All are true.		
13. Which form of ele	ctromagnetic radiation has	the shortest wavelengths?
a) gamma rays	b) microwaves	c) radio waves
d) infrared radiation	e) x-rays	
14. Which of the follows:	wing is optically active?	
a) HN(CH ₃) ₂	b) CH ₂ Cl ₂	c) 2-chloropropane
d) 2-chlorobutane	e) 3-chloropentane	
15. Teflon is an examp	ble of a	
a) copolymer	b) homopolymer	c) dimer
d) two of these	e) none of these	
c) is used to recover sulf	iir trom iinaergroiina aeno	sits
c) is used to recover sulfd) is used to produce nite) none of these	-	sits.
 d) is used to produce nite e) none of these 17. When a metal commanth and the metal ion acts as b) The metal ion is a Levis c) The ligand is a Lewis 	ric acid.	what are the metal ion and ligands acting as? nd acts as a Lewis acid. its conjugate base. its conjugate acid.
d) is used to produce nit e) none of these 17. When a metal com a) The metal ion acts as b) The metal ion is a Le c) The ligand is a Lewis d) The metal ion acts as e) None of these	plex ion forms in solution, a Lewis base, and the ligand is base, and the metal ion is	what are the metal ion and ligands acting as? nd acts as a Lewis acid. its conjugate base. its conjugate acid.
d) is used to produce nit e) none of these 17. When a metal com a) The metal ion acts as b) The metal ion is a Le c) The ligand is a Lewis d) The metal ion acts as e) None of these 18. Which of the follow	plex ion forms in solution, a Lewis base, and the ligand is base, and the ligand is a Lewis acid, and the metal ion is a Lewis acid, and the ligar wing is paramagnetic?	what are the metal ion and ligands acting as? nd acts as a Lewis acid. its conjugate base. its conjugate acid.
d) is used to produce nit e) none of these 17. When a metal com a) The metal ion acts as b) The metal ion is a Lev c) The ligand is a Lewis d) The metal ion acts as e) None of these 18. Which of the follow a) H ₂ b) B ₂ c) C	plex ion forms in solution, a Lewis base, and the ligand is base, and the ligand is a Lewis acid, and the metal ion is a Lewis acid, and the ligar wing is paramagnetic?	what are the metal ion and ligands acting as? Ind acts as a Lewis acid. Its conjugate base. Its conjugate acid. Ind acts as a Lewis base. It wo of the above are paramagnetic.

是否使用計算機:是

第 5 頁,共 14 頁

系所:應用化學系

a) The nucleus has an unusually light nucleus and is unstable.

本科原始成績:100分

科目:普通化學

考試時間:100分鐘

20. Why would the

be likely to be radioactive?

b) The nucleus is an unusually heavy nucleus and is unstable.								
c) The nucleus has an odd n	umber of both	protons and n	eutrons.					
d) The nucleus has too many neutrons based on the number of protons.								
e) The nucleus does not have a magic number of either protons or neutrons.								
21. What is the shape of the	ne ICl ₅ molecu	le?						
a) square pyramid	b) trigonal bipyramid c) octahedral							
d) see-saw	e) none of th	nese						
22. As indicated by Lewis	s etructures wh	aich of the foll	owing species could probably not exist as a					
stable molecule?	Siructures, wil	iicii oi tiic ioii	owing species could probably not exist as a					
a) NH ₃ b) N ₂ H ₂	c) N ₂ H ₄	d) N_2H_6	e) N ₂ O ₄					
23. Which of the following	g statements is	true?						
a) The exact location of an o	a) The exact location of an electron can be determined if we know its energy.							
b) An electron in a 2s orbita	b) An electron in a 2s orbital can have the same n , l , and m_l quantum numbers as an							
electron in a 3s orbital.								
c) Ni has 2 unpaired electro	ns in its 3d orb	oitals.						
d) In the buildup of atoms, of	electrons occup	by the 4f orbita	als before the 6s orbitals.					
e) Only three quantum num	bers are needed	d to uniquely o	describe an electron.					
24. Which of the followin	_							
	_	-	rbing electromagnetic radiation.					
		_	netic radiation is emitted from it.					
III. The energy of electroma	•		1 ,					
	-	_	can go to the $n = 2$ state by emitting					
electromagnetic radiation at	the appropriat	e frequency.						
V. The frequency and wave	length of electr	romagnetic rad	diation are inversely proportional to each					
other.								
a) I, II, III b) II, III, IV	c) I, II, IV	d) III, V	e) III, IV, V					
25. For which of the following the state of the stat	wing diatomic	molecules wo	ould the bond order become greater if an					

背面尚有試題

科目:普通化學

系所:應用化學系

考試時間:100分鐘

本科原始成績:100分

是否使用計算機:是

electron is removed, i.e., if the molecule is converted to the positive ion in its ground state?

- a) B_2
- b) C₂
- c) F₂
- d) Na₂
- e) P₂

26. The complex ion NiCl₄²⁻ is tetrahedral. The number of unpaired electrons in the complex is:

- a) 0
- b) 1
- c) 2
- d) 3
- e) 4

27. What is the density of a hydrogen atom? Assume the radius of the hydrogen atom is 5.0×10^{-9} m.

- A. 0.4 g/cm^3
- B. 0.40 g/cm^3
- C. 3.2 g/cm^3
- D. $3.2 \times 10^{-6} \text{ g/cm}^3$
- E. 3.2×10^{-2} g/cm³

28. Which one is the correct systematic name for NaOCl?

- A. Sodium perchlorate
- B. Sodium chlorate
- C. Sodium chloric acid
- D. Sodium hypochlorate
- E. Sodium hypochorite

29. Which compound(s) have the wrong formula?

1	sodium oxide	NaO
2	sodium	NaO ₂
	peroxide	
3	diphosphorus	P ₂ O ₅
	pentoxide	
4	copper(II)	Cu(NO ₃) ₂
	nitrate	
5	silicon	SiCl ₄
	tetrachloride	

科目:普通化學 系所:應用化學系 考試時間:100分鐘 本科原始成績:100分 是否使用計算機:是

6	lead(II) oxide	PbO ₂
7	copper(I)	CuCl
	chloride	
8	gallium	Ga_2As_2
	arsenide	
9	cadmium	CdSe
	selenide	
10	zinc sulfide	ZnS_2

- A. All are correct
- B. All are incorrect
- C. 1,2,6,8 are incorrect
- D. 1,2,6,8,10 are incorrect
- E. 1,2,3,6,7,8,10 are incorrect
- **30**. A single molecule has a mass of 7.31×10^{-23} g. Select an example from the list below of a molecule that can have this mass.
 - A. HF
 - B. N₂O
 - $C. O_2$
 - D. HCN
 - E. HCl
- 31. An element X has five major isotopes, which are listed below with their natural abundances.

科目:普通化學 系所:應用化學系 是否使用計算機:是 考試時間:100分鐘 本科原始成績:100分

Identify the element.

Isotope	Percent	Mass
1	Natural	(amu)
	Abundance	
⁴⁶ X	8.00%	45.95269
^{47}X	7.3%	46.951764
⁴⁸ X	73.8%	47.947947
⁴⁹ X	5.5%	48.947841
^{50}X	5.4%	49.944792

- A. Sn
- B. In
- C. Cd
- D. Cr
- E. Ti
- 32. Chloral hydrate = $(C_2H_3Cl_3O_2)$ is a drug formerly used as a sedative and hypnotic. What mass of chloral hydrate would contain 1 g Cl?
 - A. 165.39 g
 - B. 3.023 g
 - C. $5.5 \times 10^{22} g$
 - D. 1.6 g
 - E. 1.373 x 10⁻¹⁹ g
- 33. Calculate the percent composition by mass of $C_{20}H_{29}FO_3$.
 - A. C: 71.40 %, H: 8.689%, F= 5.684%, O=14.27 %
 - B. C: 8.689%, %, H: 71.40 %, F= 5.684%, O=14.27 %
 - C. C: 71.40 %, H: 5.684%, F=8.689%, O=14.27 %
 - D. C: 14.27 %, H: 5.684%, F= 5.684%, O=71.40 %
 - E. C: 71.40 %, H: 8.689%, F= 14.27 %, O=5.684%
- **34**. Natural rubidium has the average mass of 85.4678 and is composed of isotopes ⁸⁵Rb (mass=84.9117) and ⁸⁷Rb. The ratio of ⁸⁵Rb/⁸⁷Rb in natural rubidium is 2.591. Calculate the

科目:普通化學 系所:應用化學系 是否使用計算機:是 本科原始成績:100分

mass of ⁸⁷Rb.

- A. 85.47 amu
- B. 86.92 amu
- C. 84.91 amu
- D. 85.47 amu
- E. 85.18 amu
- 35. A sample of a hydrocarbon contains 4.26×10^{23} atoms of hydrogen and is 36.95% hydrogen by mass. If the molecular mass of the hydrocarbon is between 55 and 65 g/mol, what is the mass of the sample?
 - A. 2.50 g
 - B. 2.25 g
 - C. 41.1 g
 - D. 29.1 g
 - E. 40.9 g
- **36.** A 9.780 g gaseous mixture contains ethane (C_2H_6) and propane (C_3H_8) . Complete combustion to form carbon dioxide and water requires 1.120 mol of oxygen. Calculate the mass percent of ethane in the original mixture given.
 - A. 8%
 - B. 18%
 - C. 28%
 - D. 38%
 - E. 58%
- **37**. A mixture contains only sodium chloride and potassium chloride. A 0.3568 g sample of the mixture was dissolved in water. It took 46.55 mL of 0.1100 M AgNO₃ to completely precipitate all the chloride present. What is the composition (by mass percent) of the mixture?
 - A. 67.5 % KCl, 32.5 % NaCl
 - B. 74.8 % KCl . 25.2 % NaCl
 - C. 89.5 % KCl , 10.5% NaCl
 - D. 50 % KCl, 50 % NaCl
 - E. 55 % KCl, 45 % NaCl

科目:普通化學 系所:應用化學系 是否使用計算機:是 本科原始成績:100分

38. A mixture contains only NaCl and $Al_2(SO_4)_3$. A 1.45 g sample of the mixture is dissolved in water and an excess of NaOH is added, producing a precipitate of $Al(OH)_3$. The precipitate is filtered, dried, and weighed. The mass of the precipitate is 0.107 g. What is the mass of $Al_2(SO_4)_3$ in the sample?($Al_2(SO_4)_3 = 342.17$ g/mol)

- A. 0.699 g
- B. 0.245 g
- C. 0.231 g
- D. 0.123 g
- E. 0.235 g

39. Reaction of 19.0 g of zinc with excess silver nitrite to produce silver metal and zinc nitrite. The reaction is stopped before all the zinc metal has reacted and 29.0 g of solid metal is present. Calculate the mass of each metal in the 29.0 g mixture.

- A. 11.6 g Zn, 10.4 g Ag
- B. 12.6 g Zn, 11.4 g Ag
- C. 13.6 g Zn, 12.4 g Ag
- D. 14.6 g Zn, 14.4 g Ag
- E. 15.6 g Zn, 13.4 g Ag

40. What is the correct name for what is in the picture below/

- A. a manometer
- B. a torricellian barometer
- C. a torr meter
- D. a mecury tube
- E. a Galileo thermometer

科目:普通化學 系所:應用化學系 是否使用計算機:是 本科原始成績:100分

41. Use the following diagrams to select the best answer to the following question. In the figure V vs T, why is each gas at a different volume?

Boyle's law: $V = \frac{k}{p}$ (at constant T and n)

Charles's law: V = bT (at constant P and n)

Avogadro's law: V = an (at constant T and P)

- A. because the gases are at different pressures
- B. because the gases are at different temperatures
- C. because of Boyles law
- D. because of Charles's law
- E. because of Avogadro's law
- **42.** In a mixture of the two gases, the partial pressures of $CH_4(g)$ and $O_2(g)$ are 0.225 atm and 0.320 atm, respectively. Calculate the number of grams of O_2 in the mixture. When T=70 C, Volume=13.5 L
 - A. 4.90 g O₂
 - B. 3.90 g O₂
 - C. 3.03 g O_2
 - D. 3.20 g O₂
 - E. 5.21 g O₂
- **43**. A compound contains only nitrogen and hydrogen and is 87.4% nitrogen by mass. A gaseous sample of the compound has a density of 0.857 g/L at 690 torr and 100 °C. What is the *empirical* formula of the compound?
 - A. N_2H_4
 - B. NH₂
 - C. NH

科目:普通化學 系所:應用化學系 考試時間:100分鐘 本科原始成績:100分 是否使用計算機:是

- $D. N_4H_8$
- E. N_8H_{16}
- **44.** A flask has two sides separated by a stopcock. What is the total pressure (in torr) in the flask when the stopcock is opened? One side of the flask contains 2.00 L H₂ at 475 torr, and the other side of the flask contains 1.00 L N₂ at 0.200 atm.
 - A. 0.333 torr
 - B. 368 torr
 - C. 568 torr
 - D. 669 torr
 - E. 421 torr
- **45**. 1 mole of oxygen gas and 2 moles of ammonia are placed in a container and allowed to react at 850 degrees Celsius according to the equation:

$$4NH_3(g) + 5O_2(g) --> 4NO(g) + 6H_2O(g)$$

If the total pressure in the container is 5.00 atm, what are the partial pressures for the three gases remaining?

- A. P_{NH3} = 1.875 atm, P_{NO} = 1.25 atm, P_{H2O} = 1.875 atm
- B. P_{NH3} = 3.875 atm, P_{NO} = 2.25 atm, P_{H2O} = 1.875 atm
- C. P_{NH3} = 6.875 atm, P_{NO} = 1.25 atm, P_{H2O} = 1.875 atm
- D. P_{NH3} = 1.875 atm, P_{NO} = 6.875 atm, P_{H2O} = 1.875 atm
- E. P_{NH3} = 4.875 atm, P_{NO} = 1.25 atm, P_{H2O} = 5.00 atm
- **46**. A sample of methane (CH₄) gas contains a small amount of helium. Calculate the volume percentage of helium if the density of the sample is .7092 g/L at 0.0 °C and 1.000 atm.
 - A. 98.84% CH₄, 1.16% He
 - B. 97.84% CH₄, 2.16% He
 - C. 96.84% CH₄, 3.16% He
 - D. 95.84% CH₄, 4.16% He
 - E. 99.84% CH₄, 0.16% He

科目:普通化學 系所:應用化學系 是否使用計算機:是 本科原始成績:100分

47. Methanol can be produced by the following reaction

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$$

Hydrogen at STP flows into a reactor at a rate of 16.0 L/min. Carbon monoxide at STP flow into the reactor at a rate of 25.0 L/min. If 5.30 g of methanol is produced per minute, what is the percent yield of the reaction?

- A. 40.5%
- B. 41.5%
- C. 42.5%
- D. 43.5%
- E. 46.5%
- **48**. An electron in a one-dimensional box requires a wavelength of 280 nm to excite an electron from the n=2 to the n=3 energy level. **Calculate the length of this box**.
- A. 100.5 nm
- B. 39.5 nm
- C. 0.65 nm
- D. 3.50 nm
- E. 0.25 nm
- **49**. Which of the following sets of quantum numbers are not allowed in the hydrogen atom?
- I. $n=3, L=2, m_L=2$
- II. $n=4, L=3, m_L=4$
- III. n=0, L=0, m_L =0
- IV. n=2, L=-1, m_L =1
 - A.) I and II
 - B.) II and III and IV
 - C.) I and IV
 - D.) I only
 - E.) None are allowed
- **50**. Suppose we have a pink solution containing an unknown concentration of $Co^{2+}(aq)$ ions. A sample of this solution is placed into a spectrophotometer, and the absorbance is measured at a

科目:普通化學 系所:應用化學系 考試時間:100分鐘 本科原始成績:100分 是否使用計算機:是

wavelength where ε for Co^{2^+} (aq) is known to be 12 L mol⁻¹cm⁻¹. The absorbance A is found to be 0.60. The width of the sample tube is 1.0 cm. Calculate the concentration of Co^{2^+} in the unknown pink solution.

- A. 7.2 mol/L
- B. 0.030 mol/L
- C. 0.050 mol/L
- D. 2.6 mol/L
- E. 20 mol/L