招	生导		度	101	招	生	類	別	碩士班	
系	所	班	別	生命科學系 生物技術碩士班(甲組)、材料科學與工程學系碩士班						
科			目	物理化學						
注	意	事	項	本考科可使用掌上型計算機						

- 1. The initial state of a perfect gas (1 mol) is 10 atm and 600 K. It expands isothermally to a pressure of 1 atm. Determine the value of ΔS . (R = 8.314 JK⁻¹mol⁻¹ = 0.082 LatmK⁻¹mol⁻¹) (20 %).
- It was found that x_A = 0.220 (mole fraction of A in the liquid phase) and y_A = 0.314 (mole fraction of A in the vapor phase) for a binary mixture at 30°C and 101.3 kPa. Calculate the activity coefficient of both components (γ_A and γ_B) on the Raoult's law basis. Assume P_A* = 73.0 kPa and P_B* = 92.1 kPa for vapor pressure of pure A and pure B, respectively. (20 分)
- 3. Prove that ΔG is the maximum amount of non-PV work can be extracted at constant T and P. (Use G = H-TS) (20 %)
- 4. The wavefunction for the motion of a particle in a ring is of the form $\Psi = Ne^{im\phi}$. Determine the normalization constant N. (20 %)
- 5. A rate constant is 1.78*10⁻⁴ Lmol⁻¹s⁻¹ at 19°C and 1.38*10⁻³ Lmol⁻¹s⁻¹ at 37°C. Find the Arrhenius parameters of the reaction. (R = 8.314 JK⁻¹mol⁻¹) (20 分)