招	生學	年	度	101	招	生	類	別	碩士班
系	所	班	別	材料科學與工程學系碩士班				-	
科			目	材料科學與工程					
注	意	事	項	本考科可使用掌上型計算機					

- 1. Define or explain the following terms in some sentence(s). You need to explain the names of the parameters you use. (42%)
 - (1) polymorphism, (2) twin boundary, (3) self-diffusion, (4) Hooke's law, (5) yield strength, (6) ductility, (7) toughness, (8) strain hardening, (9) fatigue limit, (10) creep, (11) eutectoid reaction, (12) Gibbs phase rule, (13) precipitation hardening, (14) homopolymers.
- 2. For a K⁺-Cl⁻ ion pair, attractive and repulsive energies E_A and E_R , respectively, depend on the distance between the ions r, according to

$$E_A = -\frac{1.436}{r} \qquad E_R = \frac{5.86 \times 10^{-6}}{r^9}$$

For these expressions, energies are expressed in electron volts per K⁺-Cl⁻ pair, and r is the distance in nanometers. The net energy E_N is just the sum of the two expressions above. Determine the minimum bonding energy, E_0 . (5%)

3. Using the figures shown below, determine whether or not it is possible to cold work brass so as to give a minimum Brinell hardness of 130, and at the same time have a ductility of at least 32%EL. (5%)

- 4. Write structural formulas for the mers of the following polymers: (a) polyvinyl chloride, (b) polystyrene, and (c) polyacrylonitrile. (6%)
- 5. (a) Point out which materials have considerable plastic deformation under compressive stress at room temperature: covalent crystals, covalently bonded ceramics, single crystals of ionically bonded ceramics, or polycrystalline inoically bonded ceramics. (3%) (b) Explain why? (5%)
- 6. A galvanic cell consists of an electrode of zinc in a 0.01 M solution of ZnSO₄ and an electrode of copper in a solution of 0.05 M CuSO₄ at 25°C. What is the emf of the cell? (5%) (Zn \rightarrow Zn²⁺ + 2e⁻, E⁰ = -0.763 V; Cu \rightarrow Cu²⁺ + 2e⁻, E⁰ = +0.337 V)
- 7. Briefly illustrate three main mechanisms that reinforcing fibers can inhibit crack propagation in ceramic-matrix materials. (6%)

国立東華大學招生考試試題 第2_頁,共_2頁

招	生导	阜 年	度	101	招	生	類	別	碩士班
系	所	班	別	材料科學與工程學系碩士班					
科			目	材料科學與工程					
注	意	事	項	本考科可使用掌上型計算機					

- 8. Describe n-type and p-type extrinsic silicon semiconductors. (4%) And plot lnσ versus 1/T for an n-type extrinsic semiconductor and explain this curve in detail, where σ and T are conductivity of this semiconductor and absolute temperature, respectively. (4%)
- 9. Calculate a theoretical value for the saturation induction for iron, assuming all unpaired 3d electrons contribute to the magnetization. (Fe is BCC and a = 0.287 nm; each Fe atom has 4 Bohr magnetrons; atomic number of Fe: 26, μ_0 : $4\pi \times 10^{-7}$ T·m/A, μ_B : 9.27×10⁻²⁴ A·m²) (5%)
- 10. Illustrate the final microstructures produced after the phase transformation at different cooling rates. (10%)

