國立東華大學招生考試試題 第11頁,共11頁 | 招 | 生导 | 声 年 | 度 | 101 | 招 | 生 | 類 | 別 | 碩士班 | |---|----|------------|---|---------------|---|---|---|---|-----| | 系 | 所 | 班 | 別 | 應用數學系碩士班 | | | | | | | 科 | | | 目 | 線性代數 | | | | | | | 注 | 意 | 事 | 項 | 本考科禁止使用掌上型計算機 | | | | | | - 1. (10 \Rightarrow) Suppose you may use D(f) = f', (fg)' = f'g + fg', and $(e^x)' = e^x$. Let V be the subspace $\operatorname{sp}(x^2e^x, xe^x, e^x)$ of the vector space of all differentiable functions mapping \mathbb{R} into \mathbb{R} . Let $T: V \to V$ be the linear transformation of V into itself given by taking second derivatives, so $T = D^2$, and let $B = B' = (x^2e^x, xe^x, e^x)$. Find the matrix A representing T with respect to B and B'. (That is, $A = [T]_B^{B'}$.) - 2. (10 points) Prove that for any $A, B \in M_n(\mathbb{C})$, AB and BA have the same eigenvalues. - 3. (10 points in total, 2 points each) Let V be a finite dimensional inner product space over \mathbb{C} , A be a normal linear transformation on V, that is, $A^*A = AA^*$. Prove that - (a) For any v in V, $||Av|| = ||A^*v||$. - (b) $\ker A = \ker A^*$ - (c) $\forall \lambda \in \mathbb{C}, A \lambda I$ is also normal. - (d) If $Av = \lambda v$, then $A^*v = \overline{\lambda}v$. - (e) If $\lambda_1 \neq \lambda_2$, $v_1 \neq 0 \neq v_2$, $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$, then $\langle v_1, v_2 \rangle = 0$. - 4. (10 \Rightarrow) Prove that a $n \times n$ square matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. - 5. (10 points) Let $A = \begin{bmatrix} 1 & -2 \\ 3 & 6 \end{bmatrix}$. Find out A^{1000} . - 6. (10 points) Suppose you may use the fundamental theorem of Algebra: any nonconstant polynomial in $\mathbb{C}[x]$ has a root in \mathbb{C} . Prove Schur lemma: $\forall A \in M_n(\mathbb{C}), \exists U$: unitary, $\exists T$: upper triangular $\ni A = UTU^*$. - 7. (10 points) Suppose you may use Schur lemma: $\forall A \in M_n(\mathbb{C}), \exists U$: unitary, $\exists T$: upper triangular $\ni A = UTU^*$. Prove Caylay-Hamilton theorem: If $p(\lambda)$ is the characteristic polynomial of $A \in M_n(\mathbb{C})$, then p(A) is the zero matrix. - 8. (10 points) Suppose you may use results in questions above. Let $A = \begin{bmatrix} 1 & -2 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 2 & 6 \end{bmatrix}$. Find out $A^{2012} 14A^{2011} + 73A^{2010} 168A^{2009} + 144A^{2008} + 10A + I$. - 9. (10 points) Suppose you may use Schur lemma: $\forall A \in M_n(\mathbb{C}), \exists U$: unitary, $\exists T$: upper triangular $\ni A = UTU^*$. Prove that for $A \in M_n(\mathbb{C})$, if A is normal, then A is diagonalizable. - 10. (10 points) Suppose you may use results in questions above. Prove that if $A \in M_n(\mathbb{R})$ and $A = A^T$, then $\exists U \in M_n(\mathbb{R}) \ni (U^T U = I = UU^T \wedge U^T AU$ is diagonal).