元智大學 103 學年度研究所 碩士班 招生試題卷

系(所)別:

通訊工程學系項

组对: 通訊組

科目: 工程數學

用紙第 / 頁共 / 頁

●不可使用電子計算機

- 1. (10%) (Probability Theory) With your own words, please explain:
 - (a) Random variable. (5%)
 - (b) Independent events. (5%)
- 2. (20%) The probability density function of random variable X is

$$f_X(x) = \begin{cases} 0.5e^{-x/2} & x \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

What is the second moment of X?

- 3. (20%) Suppose that X is a Gaussian random variable with mean μ and variance σ^2 , and let $Z = \alpha X + \beta$, where α (nonzero) and β are scalars. Please find the probability density function of Z.
- 4. (20%) Assume that

$$\mathbf{C} = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$$

where ρ is a coefficient, which satisfies $|\rho| \le 1$.

- (a) Please find the eigenvalues (A) and eigenvectors (v). (8%)
- (b) If $\rho > 0$, please find the eigenvector in (a) which can maximize $\mathbf{v}^T \mathbf{C}^{-1} \mathbf{v}$ and determine the maximum value of $\mathbf{v}^T \mathbf{C}^{-1} \mathbf{v}$. (6%)
- (c) If $\rho < 0$, please find the eigenvector in (a) which can maximize $\mathbf{v}^T \mathbf{C}^{-1} \mathbf{v}$ and determine the maximum value of $\mathbf{v}^T \mathbf{C}^{-1} \mathbf{v}$. (6%)
- 5. (10%) Consider the $(2M+1)\times 2$ matrix and M being a positive integer

$$\mathbf{H} = \begin{bmatrix} 1 & -M \\ 1 & -(M-1) \\ \vdots & \vdots \\ 1 & M \end{bmatrix}$$

- (a) Prove the columns of H are linearly independent. (5%)
- (b) Please find the inverse of HTH. (5%)

元智大學 103 學年度研究所 碩士班 招生試題卷

魚(所)別: 土班

通訊工程學系碩

组別: 通訊組

科目: 工器數學

用紙第 乙 頁共 之 頁

●不可使用電子計算機

6. (20%) Let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 4 \end{bmatrix}$$

Find the bases for R(A), N(A), $R(A^T)$, and $N(A^T)$.

 $(R(A) \text{ and } R(A^T) \text{ are the range spaces of A and } A^T$, respectively.)

 $(N(A) \text{ and } N(A^T) \text{ are the null spaces of } A \text{ and } A^T, \text{ respectively.})$

103044