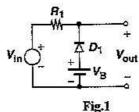
元智大學 103 學年度研究所 碩士班 招生試題卷

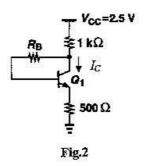
系(所)別:

通訊工程學系碩

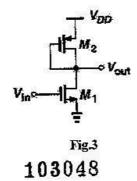
士班


组列: 微波組

科目: 電子學


用紙第 / 頁共 2 頁

●不可使用電子計算機


1. Consider the circuit shown in Fig.1. If the input is given by $V_{ln} = V_o \sin(\omega t)$, plot the output waveform as a function of time. Assume an ideal diode model (on-off model). 15%

2. The circuit shown in Fig.2 is designed for a collector current I_C of ImA. Assume $\beta+1\sim\beta=100,\ V_A=\infty$ and $I_S=1\times10^{-15}A$. (a) Determine the required value of R_B . (b) Calculate V_{CE} , V_{BE} and I_B . (c) Calculate the small signal transconductance g_m . (Hint: $\ln(10)=2.3025$, $V_T=26$ mV) 18% ((a) 6% (b) 6% (c) 6%)

3. Consider the channel-length modulation of MOS transistors. Determine (a) the input impedance, (b) the output impedance, and (c) the voltage gain of the stage shown in Fig.3. g_{m1}, g_{m2} are the transconductances of M₁ and M₂. r_{o1}, r_{o2} are the channel-length modulation impedance of M₁ and M₂. Neglect the capacitance inside these transistors. 17% ((a) 6% (b) 6% (c) 5%)

元智大學 103 學年度研究所 碩士班 招生試題卷

通訊工程學系碩

組別: 微波組

科目: 電子學

用紙第 乙 頁共 2 頁

条(所)別: 士班

●不可使用電子計算機

- 4. The NMOS transistor in the discrete common-source amplifier shown in Fig. 4 is biased to have the transconductance g_m and the channel-length modulation impedance r_o . (20%)
 - (a) Find the expression of the mid-band voltage gain $A_M = V_o/V_{sig}$. (5%)
 - (b) Find the expressions of the three low frequency poles corresponding to the three capacitors C_{C1} , C_{C2} , and C_S , respectively. (9%)
 - (c) Find the high frequency corner frequency f_H in terms of C_{gs} and C_{gd} for the NMOS FET. (6%)

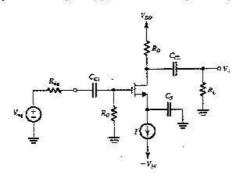


Fig. 4

5. The active-loaded MOS differential amplifier shown in Fig. 5, all transistors have the same kW/L and $|V_A|$. Find the differential gain $A_d = v_o/v_{id}$ and the output resistance. (10%)

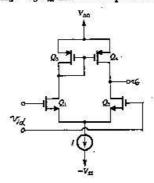


Fig. 5

- A shunt-shunt feedback amplifier is designed with an operational amplifier as shown in Fig. 6, where
 the operational amplifier has a finite open-loop gain μ with infinite input impedance and zero output
 impedance. (20%)
 - (a) Find the basic amplifier gain A (without feedback effect) and the feedback factor β . (8%)
 - (b) Find the feedback gain A_{f_i} the input impedance R_{if} and the output impedance R_{of} (12%)

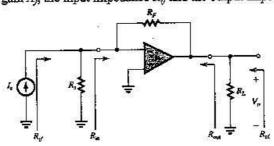


Fig. 6 103049