元智大學 103 學年度研究所 碩士班 招生試題卷

名(新)別

通訊工程學系碩

組別: 微波組

斜目: 電磁學

用紙第 / 頁共 2 頁

●不可使用電子計算機

1. A plane boundary exists at y=0 which separates the space into two media. The dielectric constant in medium 1(y<0) is $\varepsilon_r=9$. Medium 2(y>0) is filled with perfect conductor with $\sigma=\infty$. A time-harmonic plane wave with electric field linearly polarized in x-direction of the

frequency $f = \frac{1}{2\pi}$ GHz is incident from the region $y < \theta$ and propagating toward the boundary $y = \theta$.

Given the magnitude of the incident wave to be 1 (V/m) and assuming source-free case: 50%

- 1) Find the characteristic impedance and the characteristic phase velocity of the plane wave in the media $y < \theta$. (5%)
- 2) Write down the expression for the wave vector $k^{(i)}$ of the incident wave in medium 1. (5%)
- 3) Write down the phasor representation of the incident wave (E-field and H-field). (10%)
- 4) Write down the phasor representation of the reflected wave (E-field and H-field), assuming the magnitude of the reflected E-field is E_r. (10%)
- 5) Determine the reflection coefficient at y = 0 by matching the proper boundary conditions. (10%)
- Using cosine reference, write the total electric field including the incident and reflected waves in time instantaneous expression. (10%)
- 2. Write down the following 2
 - 26%
 - a) The fundamental postulates for magnetostatics. (6%)
 - b) The mathematical expression (in its integral form) for Gauss's Law. (6%)
 - c) The Maxwell's equations. (8%)
 - d) The mathematical expression for Ampere's Law. (6%)
- 3. Choose the correct answer: (15%, 3% each)
 - 1) An infinite straight line that lies on the z-axis carrying a current I in the z-direction. For an observation point located at a distance r from the line, which of the followings are true?
 - (a) The magnetic vector potential A due to the straight line is inversely proportional to r⁵;
 - (b) The magnetic flux density \underline{B} due to the straight line is inversely proportional to r;
 - (c) The magnetic flux density <u>B</u> due to the straight line is zero at any points on the x-y plane;
 - (d) The magnetic flux density \underline{B} due to the straight line is in the z-direction at any points on the x-y plane.
 - 2) In rectangular coordinate system, two point charges +Q, and -Q locate at (0,0,d/2) and (0,0,-d/2) on z-axis, respectively. Such a set of two charges can be treated as the electric dipole. For an observation point located at a distance r from the origin (r>>d), which of the followings are true?
 - (a) The electric field intensity \underline{E} due to the system of charges is inversely proportional to r^3
 - (b) The scalar electric potential V due to the system of charges is inversely proportional to r;
 - (c) The potential is zero everywhere in the x-y plane;
 - (d) The total work required to hold the two charges in place is zero.
 - 3) A lossless transmission line of 50Ω characteristic impedance is terminated with a load impedance of $Z_L = 50 \Omega$. The SWR of the transmission line is:

(a)0; (b) 1; (c) 5/3; (d) 1.5.

103046

元智大學 103 學年度研究所 碩士班 招生試題卷

系(所)別:

通訊工程學系項

士班

組別: 微波組

科目: 電磁學

用紙第 2 頁共 2 頁

●不可使用電子計算機

4) A 50Ω transmission line shows a SWR of 2. One of the voltage maxima along the line is a half-wavelength away from the load. The load impedance is:

(a) 100 Ω ; (b) 150 Ω ; (c) 75 Ω ; (d) 50 Ω .

5) What is the phase velocity of a plane wave propagating in a uniform dielectric medium of dielectric constant 4? (c is the speed of light)

(a)c; (b) 2c; (c) 0.5c; (d)4c.

4. Given the coordinates of three points in space as A(x=2, y=-1, z=2), B($\rho=\sqrt{2}$, $\phi=45^{\circ}$, z=3), and C($r=5\sqrt{2}$, $\theta=45^{\circ}$, $\phi=53^{\circ}$), find (use cos53° = 0.6 for all the calculations) 9%

a) the angle spanned by AB and AC (3%)

b) the component of <u>BC</u> in the direction of <u>CA (3%)</u>

c) the unit vector of (BC - AC) (3%)

103047