碩士班 招生試題卷 元智大學 103 學年度研究所

系(所)別:

組別: 不分組

用紙第 / 頁共2 頁

●可使用現行『國家考試電子計算器規格標準』規定第二類之計算機

元智大學一百零三學年度 研究所考試 招生試題卷

科目:電子學 系別:光電工程研究所

Parameter: Vt= 0.026mV (T= 300 K), In10=2.3, e⁻¹=0.37, e⁻³=0.05

- 1. (5%) What is the reasonable value for the intrinsic carrier concentration in silicon at T=300 K: (a) $1.5\times10^{10} \text{ cm}^{-3}$ (b) $1.5\times10^{18} \text{ cm}^{-3}$ (c) $1.5\times10^{5} \text{ cm}^{-3}$ (d) $1.5\times10^{25} \text{ cm}^{-3}$
- 2. (5%) What is the suitable doping species for the N-type Si: (a) N (b) Al (c) B (d) As
- 3. (5%) What is the ideal gate current for the MOS filed-effect transistor: (a) 0 A (b) 1 mA (c) 10A (d) 1000 μA.
- 4. The hole concentration in silicon is given by $p(x) = 10^4 + 10^{15} \exp(-x/L_p)$, $x \ge 0$. The value of L_p is 10 µm. The hole diffusion coefficient is $D_p = 15 \text{ cm}^2/\text{s}$. Determine the hole diffusion current density at (a) x=0, (3%) (b) $x=10 \mu m$ (3%), and (c) $x=30 \mu m$. (4%)
- 5. (5%) (a) The applied electric field in p-type silicon is E=10 V/cm. The semiconductor conductivity is $\sigma = 1.5$ (ohm-cm) and the cross-sectional area is A=10⁻⁵ cm². Determine the drift current. (5%) (b) The cross-sectional area of a semiconductor is A = 1.2 x 10^{-3} cm² and the resistivity is ρ = 0.4 (ohm-cm). If the drift current is I= 1.2 mA, what applied electric field must be applied?
- 6. Consider the rectifier circuits shown in Figure 1 and 2. Assume the input voltage is from a 110 V (rms), 60 HZ ac source. The desired peak output voltage vo is 9 V, and the diode turn on voltage is assumed to be $V_r = 0.7$ V. Compare the characteristics of (a) and (b) in these two full-wave rectifier circuits:
 - (a) transformer turns ratio. (5%)
 - (b) peak inverse voltage. (5 %)
 - (c) Which rectifier is better? (5 %)
- Determine the current in each diode (I_D1, I_D2, and I_D3) and the voltages of V_A and V_B in the multidiode circuit shown in Figure 3 .Let $V_y = 0.7V$ for each diode. (10%)
- 8. (5%) (a) Please describe the "Body effect" in MOSFET. (5%) (b) Please describe the "Early Voltage" in Bipolar Junction Transistor. (5%) (c) For small signal consideration, an NMOS transistor biased in the saturation region, with a drain current of I_{DQ} , prove $g_m=2(K_nI_{DQ})^{1/2}$ in MOSFET.
- 9. For the circuit in Figure 4 let $\beta = 100 \cdot V_A = 200 \text{V} \cdot V_{CC} = 10 \text{V} \cdot V_{BE}(\text{on}) = 0.7 \text{V} \cdot R_C = 15$ $k\Omega$ · R_B =100 $k\Omega$ · and V_{BB} =0.96V. (a) Determine the small-signal hybrid- π parameters r_{π} , g_{m} , and r_{o} (10 %). (b) Find the small – signal voltage gain $A_{\nu} = V_{o}/V_{z}$. (5 %)
- 10. Determine the small-signal voltage gain of a common-source circuit containing a source resistor. Consider the circuit in Figure 5 with parameters: $V_{TN} = 0.8V$, $K_n =$ 1mA/V^2 , and $\lambda = 0$. (Note: $V_{GSQ} = 1.5 \text{V}$, $I_{DQ} = 0.5 \text{ mA}$, and $V_{DSQ} = 6.25 \text{ V}$) (10%)

元智大學 103 學年度研究所 碩士班 招生試題卷

桑(所)別:

光電工程學系碩

組別: 不分組

斜目: 電子學

用紙第 2 頁共 2 頁

●可使用現行『國家考試電子計算器規格標準』規定第二類之計算機

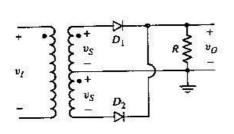


Figure 1

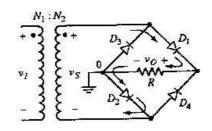


Figure 2

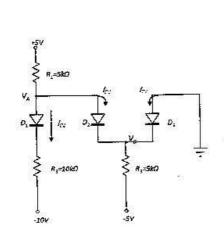


Figure 3

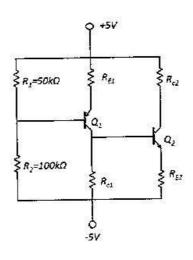


Figure 4 +5 V $R_{D} = 7 \text{ k}\Omega$ $R_{D} = 7 \text{ k}\Omega$ $R_{D} = 7 \text{ k}\Omega$ $R_{S} = 0.5 \text{ k}\Omega$

103053

Figure 5