元智大學 103 學年度研究所 碩士班 招生試題卷

系(所)別:

化學工程與材料 科學學系碩士班

组別: 不分組-選考 B

科目: 物理冶金

用纸第 | 頁共

頁

●可使用現行『國家考試電子計算器規格標準』規定第二類之計算機

- 1. True/False? (true: T; false: F) (10%)
- () (a) Substitutional diffusion occurs when the diffusing atom is small enough to move between the atoms in the lattice. This type of diffusion requires no vacancy defects in order to operate.

() (b) The occurrence of heterogeneous nucleation is more difficult than that of homogeneous type.

- () (c) A peritectic reaction is a reaction where a solid phase and liquid phase will together form two different solid phases at a particular temperature and composition.
- () (d) Tetragonal crystals have a lattice parameter of $a = b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$.
- () (e) The driving force for chemical diffusion is chemical potential gradient.
- 2. Describe the following nouns (請詳細說明物理現象,非考英翻中): (30%)
- (a) Recrystallization; (b) Skew dislocation; (c) Martenstic transformation; (d) Supercooling;
- (e) Stacking fault; (f) Kirkendall effect. 每小題 5%
- 3. (a) Derive Fick's second law via Fick's first law, $J = -D(\partial C/\partial x)$ (*J* is atomic flux; *D* is diffusivity). (10%)
 - (b)Use Fick's second law to determine which line/lines shown in Fig. 1 had already reached steady state. (5%)
 - (c)Use the Gibbs free energy and chemical potential correlation to explain why "up-hill" diffusion occurred in solids. (10%)

- 4. Gibbs phase rule describes the possible number of degrees of freedom F in a closed system at equilibrium, in terms of the number of phases P and the number of chemical constituents C in the system.
- (a) Please derive the phase rule, F = C P + 2. (5%)
- (b) Find the F value (= 0, 1, 2, or 4) for a quaternary system at 273 K, 3 atm. (3%)
- (c) Show the F values (= 0, 1, 2, 3, or 4) in the phase field \bigcirc - \bigcirc of Fig. 2. (4%)
- (d) Draw the microstructural evolutions in detail for the solidification of alloy 1 to 2 (see Fig. 2) from liquid to 100 °C (Hint: equilibrium cooling). (8%)

- 5. Provide detailed descriptions on the possible analytical methods to determine:
- (a) Chemical compositions of phases (5%)
- (b) Crystal structures of phases (5%)
- (c) Crystallographic orientation/texture (5%)