國 立 宜 蘭 大 學

101學年度研究所碩士班考試入學

電子學試題

(電子工程學系碩士班)

准考證號碼:

《作答注意事項》

- 1. 請先檢查准考證號碼、座位號碼及答案卷號碼是否相符。
- 2. 考試時間:100 分鐘。
- 3. 本試卷共有 6 題,共計 100 分。
- 4. 請將答案寫在答案卷上。
- 5. 考試中禁止使用大哥大或其他通信設備。
- 6. 考試後,請將試題恭及答案卷一併繳交。
- 7. 本試卷採雙面影印,請勿漏答。
- 8. 本考科可使用非程式型 (不具備儲存程式功能)之電子計算機。

101學年度研究所碩士班考試入學電子工程學系碩士班

電子學考科

第1頁,共3頁

- 1. Choose the correct answer for the following questions. (40%)
 - (1) Diffusion capacitance is existed while *pn* junction is under:
 - (A) open circuit (B) reverse bias (C) forward bias (D) barrier.
 - (2) Compared with the pn junction under open circuit, which is correct about pn junction under forward bias?
 - (A) Diffusion current is decreased.
 - (B) Charge stored in depletion region is increased.
 - (C) Width of depletion region is increased.
 - (D) Barrier of depletion region is decreased.
 - (3) The addition of R_e in Fig.1 is used to enhance the:
 - (A) linear region
- (B) the output resistance
- (C) the voltage gain
- (D) the transconductance.
- (4) If the current gain parameter of BJT in active region is represented as β , which is correct about the current gain parameter?

- (B) under the same circuit, the BJT with smaller β will saturate more easily.
- (C) the value of β is not related to temperature.
- (D) the current gain in saturation region is less than β .
- (5) For the Fig.2 shown is the current i_D versus v_{DS} of NMOS and the load line, which is the best bias point?
 - (A) point A (B) point B (C) point C (D) point D
- (6) Compared with Common-Emitter (CE) amplifier, which is correct about Common-Collector (CC) amplifier?
 - (A) larger voltage gain
 - (B) less output resistance
 - (C) bad frequency response
 - (D) often used in differential amplifier
- (7) The circuit shown in Fig.3 is Widlar current source, and it is used to generate
 - (A) a small output current using relatively small resistors
 - (B) a large output current using relatively large resistors
 - (C) a small output current using relatively large resistors
 - (D) a large output current using relatively small resistors

Fig.1

Fig.2

101學年度研究所碩士班考試入學

電子工程學系碩士班 電子學考科

第2頁,共3頁

- (8) Compared with CE, the CC-CE configuration shown in Fig.4 has main advantages on
 - (A) input resistance decreased and voltage gain increased
 - (B) voltage gain increased and output resistance decreased
 - (C) input resistance increased and bandwidth increased
 - (D) output resistance increased and bandwidth increased

- (9) For the current mirror shown in Fig.5 and $I_{REF} = 40 \,\mu\text{A}$, assume Q_1 and Q_2 are identical with $V_t = 0.5 \,\text{V}$, $\mu_n C_{ox}(W/L) = 20 \,\mu\text{A/V}^2$. If this circuit can work properly, which is the minimum value of voltage V_O in V? (A) 2.5 (B) 2.0 (C) 1.5 (D) 0.5
- (10) For the folder cascode amplifier shown in Fig.6, assume the current gain parameters and the transconductances of Q_1 , Q_2 are β_1 , β_2 and g_{m1} , g_{m2} , respectively. Then the voltage gain $A_v = v_o/v_i = ?$
 - (A) $-g_{m2}\beta_1r_{o1}$ (B) $-g_{m2}\beta_2r_{o2}$ (C) $-g_{m1}\beta_1r_{o1}$ (D) $-g_{m1}\beta_2r_{o2}$
- 2. The BJT circuit shown in Fig.7 has the following condition: V_{CC} = +15 V, β = 100, R_{B1} = 100 k Ω , R_{B2} = 50 k Ω , R_{C} = 5 k Ω , R_{E} = 2 k Ω . Find:
 - (a) current I_C , and
 - (b) its transconductance g_m .

(10%)

- 3. For the circuit shown in Fig.8, find:
 - (a) transfer function $V_o(s)/V_i(s)$.
 - (b) Design the circuit to obtain a dc gain = 20 dB, 3-dB frequency $\omega_0 = 10 \text{k rad/s}$, and $R_i = 1 \text{ k}\Omega$. (10%)

101學年度研究所碩士班考試入學電子工程學系碩士班

電子學考科

第3頁,共3頁

4. For the circuit shown in Fig.9, assume the diodes to be ideal. Analyze and plot the voltage transfer characteristic of the circuit.

(10%)

- 5. The circuit shown in Fig.10 has the following parameters: $I_{REF} = 200 \, \mu\text{A}$, $|V_t| = 1 \, \text{V}$, $V_{DD} = V_{SS} = 5 \, \text{V}$, $\mu_n C_{ox} = 160 \, \mu\text{A}/\text{V}^2$, $\mu_p C_{ox} = 40 \, \mu\text{A}/\text{V}^2$, $|V_A| = 20 \, \text{V}$. Find:
 - (a) the $|V_{GS}|$ of Q_1 , Q_3 , Q_5
 - (b) the input common-mode range
 - (c) the transconductance g_m of Q_2
 - (d) voltage gain v_{o1}/v_{id} .

(20%)

Fig.10

Fig.11

- 6. For the oscillator circuit shown in Fig.11, (a) find the loop gain $A\beta = V_o(j\omega)/V_x(j\omega)$.
 - (b) Find the frequency of oscillation ω_o and the minimum required value of R_f for oscillation to start.

(10%)