國立臺南大學 103 學年度 資訊工程學系碩士班 招生考試 離散數學與線性代數 試題卷

一、離散數學 (50%)

- 1. Four machines, *A*, *B*, *C*, and *D*, are connected on a computer network. It is feared that a computer virus may have infected the network. Your security team makes the following statements: (10%)
 - (1) If D is infected, then so is C.
 - (2) If C is infected, then so is A.
 - (3) If D is infected, then B is clean but C is infected.
 - (4) If A is infected, then either B is infected or C is clean.

Assume that all statements (1)(2)(3)(4) are true. Which machine are infected or clean you can conclude?

- Let Ø denote the empty set that contains no elements. Prove that for any universe U, Ø is a subset of any set A ⊆ U. (10%)
- 3. (a) Apply Euclidean algorithm to find the greatest common divisor of 630 and 1155. (5%)
 - (b) Apply Fundamental Theorem of Arithmetic to find the least common multiple of 242 and 440.(5%)
- 4. How many ways are there to place 12 marbles to 6 containers if
 - (a) Each marble is in different color and the containers are all distinct. (5%)
 - (b) The marbles are in the same color and the containers are all distinct. (5%)
 - (c) Each marble is in different color, the containers are all distinct and no container is left empty.(5%)
 - (d) The marbles are in the same color, the containers are all distinct and no container is left empty.(5%)

二、線性代數 (50%)

- 1. Determine a basis for each of the following subspaces of \mathbb{R}^4 . (10%)
 - (a) the set of vectors of the form (a, a | 2b, b, a + b)
 - (b) the set of vectors of the form (2a, b, a + 2c, a | b)
- 2. In each part, use the information in the table to determine whether the linear system
 Ax = b is consistent. If so, state the number of solutions it has. (10%)

		(a)	(b) 3 × 3 2		(c) 3 × 3 2		(d) 5 × 6 5		(e)
	Size of A	3 🗙 3							5×6
	Rank(A)	3							4
	Rank[A b]	3	3		2		5		5
			1.			-			
	Evaluate the determinant		1	-1	0	2	-1		
			- 3	1	1	0	0		
3.			2	0	4	1	0	(10%	()
			-1	1	1	0	1		
			0	1	2	0	3		

4. Consider the following homogeneous system Ax = 0, please find a basis for the null space of the matrix A. (10%)

$$\begin{cases} x_1 - x_2 + x_3 - x_4 + x_5 = 0\\ 4x_2 - 2x_3 - x_5 = 0\\ x_1 + 3x_2 - x_3 - x_4 = 0\\ -x_1 - x_2 - x_3 - x_5 = 0 \end{cases}$$

5. Let R^3 have the inner product where $\mathbf{u} = (u_1, u_2, u_3)$, Use the Gram-Schmidt

process to transform $\mathbf{u_2} = (\mathbf{1}, \mathbf{11}, \mathbf{0}), \mathbf{u_3} = (\mathbf{1}, \mathbf{1}, \mathbf{11})$ into an orthogonal basis. (10%)

第2頁,共2頁