國立臺南大學103學年度 資訊工程學系碩士班 招生考試 離散數學與線性代數 試題卷

一，離散數學（50\％）

1．Four machines，A, B, C ，and D ，are connected on a computer network．It is feared that a computer virus may have infected the network．Your security team makes the following statements：（10\％）
（1）If D is infected，then so is C ．
（2）If C is infected，then so is A ．
（3）If D is infected，then B is clean but C is infected．
（4）If A is infected，then either B is infected or C is clean．
Assume that all statements（1）（2）（3）（4）are true．Which machine are infected or clean you can conclude？

2．Let \varnothing denote the empty set that contains no elements．Prove that for any universe U, \varnothing is a subset of any set $A \subseteq U$ ．（10\％）

3．（a）Apply Euclidean algorithm to find the greatest common divisor of 630 and 1155．（5\％）
（b）Apply Fundamental Theorem of Arithmetic to find the least common multiple of 242 and 440. （5\％）

4．How many ways are there to place 12 marbles to 6 containers if
（a）Each marble is in different color and the containers are all distinct．（5\％）
（b）The marbles are in the same color and the containers are all distinct．（5\％）
（c）Each marble is in different color，the containers are all distinct and no container is left empty． （5\％）
（d）The marbles are in the same color，the containers are all distinct and no container is left empty． （5\％）

二，線性代數（50\％）

1．Determine a basis for each of the following subspaces of R^{4} ．（10\％）
（a）the set of vectors of the form $\left(\mathbf{a}_{z} \mathbf{a} \boldsymbol{I} \mathbf{b}_{z} \mathbf{b}_{v} \mathbf{a}+\mathbf{b}\right)$
（b）the set of vectors of the form $(2 \mathbf{a}, \mathbf{b}, \mathbf{a}+2 \mathbf{c}, \mathbf{a} \mathbf{l} \mathbf{b})$

2．In each part，use the information in the table to determine whether the linear system
$\mathbf{A x}=\mathbf{b} \quad$ is consistent．If so，state the number of solutions it has．（10\％）

	（a）	（b）	（c）	（d）	（e）
Size of A	$\mathbf{3 \times 3}$	$\mathbf{3 \times 3}$	$\mathbf{3 \times 3}$	$\mathbf{5} \times \mathbf{6}$	$\mathbf{5 \times 6}$
Rank（A）	3	2	2	5	4
Rank［A｜b］	3	3	2	5	5

3．Evaluate the determinant $\left|\begin{array}{rrrrr}1 & -1 & 0 & 2 & -1 \\ -3 & 1 & 1 & 0 & 0 \\ 2 & 0 & 4 & 1 & 0 \\ -1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 2 & 0 & 3\end{array}\right|$（10\％）

4．Consider the following homogeneous system $\mathbf{A x}=\mathbf{0}$ ，please find a basis for the null space of the matrix $\boldsymbol{\Lambda}$ ．（10\％）

$$
\left\{\begin{array}{l}
x_{1}-x_{2}+x_{3}-x_{4}+x_{5}=0 \\
4 x_{2}-2 x_{3}-x_{5}=0 \\
x_{1}+3 x_{2}-x_{3}-x_{4}=0 \\
-x_{1}-x_{2}-x_{3}-x_{5}=0
\end{array}\right.
$$

5．Let R^{3} have the inner product where $\mathbf{u}=\left(u_{1}, u_{2}, u_{9}\right)$ ，．Use the Gram－Schmidt
process to transform ， $\mathbf{u}_{2}=(\mathbf{1}, \mathbf{1}, \mathbf{0}), \mathbf{u}_{\mathbf{3}}=(\mathbf{1}, 1, \mathbf{1})$ into an orthogonal basis．（10\％）

