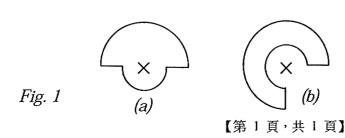
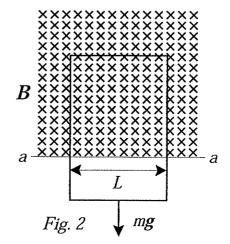
國立臺灣海洋大學 103 學年度研究所碩士班招生考試試題

考試科目:電磁學

系所名稱:光電科學研究所碩士班不分組

*可使用計算器


1. 答案以横式由左至右書寫。2. 請依題號順序作答。


1 Consider two widely separated conducting spheres A and B with radius $R_A = R$, $R_B = 2R$. Initially spheres (15%) A and sphere B has charge 2Q and -3Q respectively. A thin conducting wire was then connected between two spheres until electrostatic equilibrium was established. Assume $V(\infty) = 0$.

- (1) What would be V_A and V_B before and after the connection of wire? (5%)
- (2) What would be charges on sphere A and B respectively after the connection of wire? (5%)
- (3) What will be the ratio of surface charge density on sphere A and B after the connection of wire? (5%)
- 2 A long metal cylinder with radius a is supported on an insulating stand on the axis of a long, hollow, (15%) metal tube with radius b. The positive charge per unit length on the inner cylinder is λ , and there is an equal negative charge per unit length on the outer cylinder.
 - (1) Use Gauss's law to calculate the electric field for r < a; a < r < b; r > b. Plot E(r) as a function of r. (5%)
 - (2) Assume $V(\infty) = 0$, calculate the potential V(r) for r < a; a < r < b; r > b. Plot V(r) as a function of r. (5%)
 - (3) For a section of length L of this cylinder, what is its capacitance? (5%)
- 3 Use Biot-Savart law to calculate the magnetic field B at the crossed position of circuits shown in (10%) Fig. 1(a), 1(b): all circuits carrying a counterclockwise current i and consisting of concentric circular arcs (either half- or three quarter-circles of radii r, and 2r) and radial lengths. (10%)
- 4 In Fig. 2, a long rectangular conducting loop, of width L, resistance R, and mass m, is hung in a (10%) horizontal, uniform magnetic field B that is directed into the page and that exists only above line aa. The loop is then dropped; during its fall, it accelerates until it reaches a certain terminal speed v_c . Ignoring air drag, find that terminal speed. (10%)
- 5 Write down the boundary conditions for electric field and magnetic field at the boundary between (10%) two non-magnetic dielectric with dielectric constant ε_1 and ε_2 . (10%)
- 6 (1) Write down Maxwell's equations for electromagnetism. Explain the meaning of each equation. (20%) (30%) (2) Write down the wave equation for electric field of a traveling electromagnetic wave propagating along positive x-axis and polarized in y plane. What is the propagating velocity of such wave? (10%)

7 A plane electromagnetic wave given by the expressions $E_x = 0$, (10%) $E_y = 2\cos[2\pi \times 10^{14}(t - x/c)]$, $E_z = 0$.

- (1) What is the frequency, wavelength, propagation direction, amplitude, and polarization of the wave? (5%)
- (2) Write down the expression for the magnetic field and Poynting vector. (5%)

