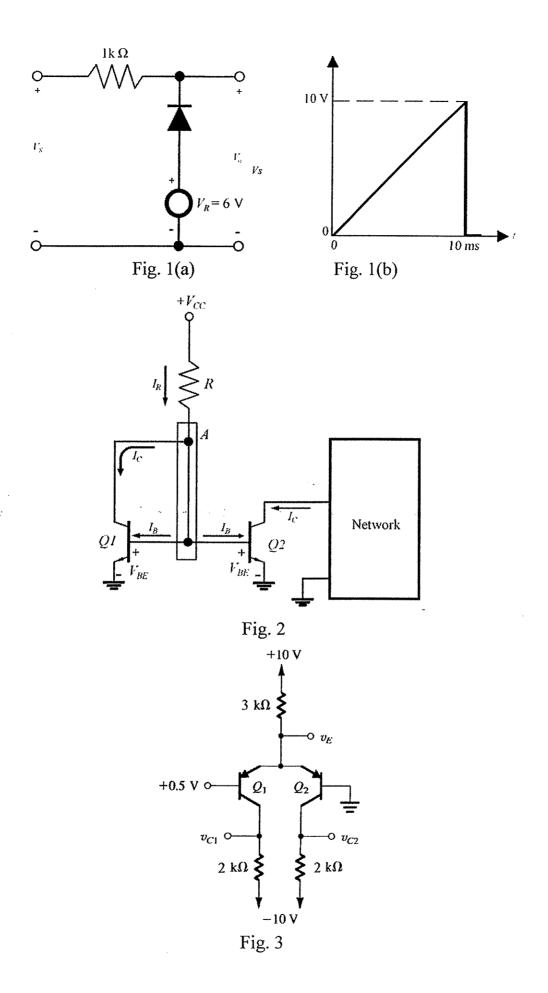
## 國立臺灣海洋大學 103 學年度研究所碩士班招生考試試題

考試科目:電子學


系所名稱:光電科學研究所碩士班不分組

\*可使用計算器

1. 答案以橫式由左至右書寫。2. 請依題號順序作答。

1. An intrinsic silicon bar is 2 mm long and has a rectangular cross section  $80 \times 100 \, \mu m$ . At 300 K, determine the electric field intensity in the bar and the voltage across the bar when a steady current of 1  $\mu A$  is measured. Note: the resistivity of this silicon bar is  $2.3 \times 10^5 \, (\Omega \cdot cm)$ . (10%)

- 2. For the circuit in Fig.1(a), for which the input voltage is the sawtooth waveform displayed in Fig.1(b), sketch (a) the transfer characteristic  $V_0$  versus  $V_s$  and (b) the output waveform  $V_0$ . The diode parameter are  $R_f = 10 \Omega$ ,  $V_r = 0.6 V$ , and  $I_s = 0$ . (20%)
- 3. Explain an *npn* transistor operation mode when consider with the (a) emitter-base and collector-base junction bias. (b) If the transistor is operated under forward active mode with the base-collector are short circuit, determined the *common-base forward* short-circuit current gain  $\alpha_F$  when  $I_E$  and  $I_C$  values are 2 X 10<sup>-3</sup> A and 5 X 10<sup>-3</sup> A. (10%)
- 4. The circuit shown in Fig. 2 is a current mirror. The transistors QI and Q2 are identical, (a) Determine  $I_C$  in terms of circuit parameters. (b) Evaluate  $I_C$  for  $V_{CC} = 10$  V,  $R = 10 \text{ k}\Omega$  and  $\beta_F = 100$ . (10%)
- 5. For the circuit in Fig. 3, find the values of  $v_E$ ,  $v_{C1}$ , and  $v_{C2}$ . Assume that  $|V_{BE}|$  of a conducting transistor is 0.7 V and that common-base current gain  $\alpha \simeq 1$ . (12%)
- 6. For the circuit in Fig. 4, the NMOS and PMOS transistors are matched with  $k'_n(W_n/L_n) = k'_p(W_p/L_p) = 0.6 \text{ mA/V}^2$  and  $V_{tn} = -V_{tP} = 1 \text{ V}$ . Find the drain current  $i_{DN}$ ,  $i_{DP}$  and the voltage  $v_o$  for  $v_I = +5 \text{ V}$  and -5 V. Neglect the channel-length modulation effect for both devices (i.e., assume that  $\lambda = 0$ ). (18%)
- 7. For the circuit in Fig. 5, let  $R_1 = 2 \text{ k}\Omega$  and  $R_2 = 5 \text{ k}\Omega$ . Find  $v_O$  and the voltage at the amplifier output  $v_A$  for  $v_I = +2 \text{ V}$ , -20 mV, and -0.2 V. Assume the op amp to be ideal with saturation voltages of  $\pm 12 \text{ V}$ . The diodes have 0.7-V voltage drops at 1 mA, and the voltage drop changes by 0.1 V per decade of current change. (20%)



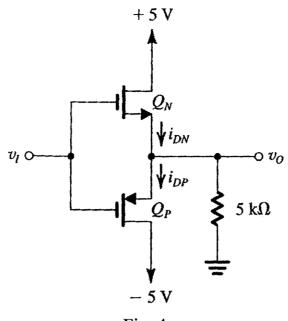



Fig. 4

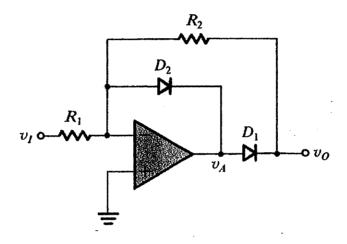



Fig. 5