B 2BBERE 103 2FEMEMALEB LSRRI
FHEAB A ERMAL (STHEH FAX)
AAR ARIRZABLTER S A

LERORADEELZE - 25 RARAFEE -

1. (15 %) A matrix with m rows and n columns is called an mxn matrix. An mxn matrix is
stored in an array in row-major order. Fill the five blanks in the function void
matrix_multiplication{double *a,double *b,double*c,int m,int n,int k) used to calculate the
matrix product: C=AxB, where the sizes of matrices A, B, and C are mxn, nxk, and mxk,
respectively, and matrices A, B, and C are stored in arrays a, b, and ¢, respectively. The
element C;; in the jith row and the jth column of matrix C can be obtained by the formula:
Cij = EuAiuBuj- v
void matrix_multiplication(double *a,double *b,double*c,int m,int n,int k)

{ intij;
for(i=0;i<m; ++i) {
for(j=0; j <k; ++j) {
double *aPtr=a+ _ (1} , *ePtr =aPtr+n;
" double *bPtr=b+ _(2) ; |

double *cPtr=c+ __(3)
*cPtr=0;
for(; aPtr<ePtr; aPtr+= _ (4} ,bPtr+= __ (5} }{

*cPtr +=*aPtr * *bPtr;

return;

2. (15 %) Write a function int range_count(struct binarytree *rootPtr,int a,int b} which accepts
a pointer rootPtr to the root of a binary search tree T and returns the number of nodes in T
having key values between a and b (a < key < b). The node structure of the binary search
tree is defined as
struct binarytree {

int key,
binarytree *left, *right;
¥
You may call other user-defined functions in the function range_count.
1



3.

{10 %) Answer the following questions about the red-black trees Ry and R,.

{a) Show the red-black tree R, after insertion of 80.

{b) Show the red-black tree R; after deletion of 70.

Notice that the rebalancing rotation and color change are needed to keep the property of

the red-black tree.

R1

(10 %) There is a huge directed acyclic graph G. The in-degrees of the nodes in G are always
less than three, and the out-degrees of the nodes in G are either zerc or more than seven.
If there isa directed path from node P to node Q, node P is defined as a predecessor of
node Q. The adjacency lists and the inverse adjacency lists of G are both available. In order
to determine if node P is a predecessor of node Q, we may use a graph search algorithm
either to find a directed path from node P to node Q with the adjacency lists of G or to find
a directed path from node Q to node P with the inverse adjacency lists of G. Give short”

answers to the following questions about determining if node Pis a predecessor of node Q.

{a) Which of the following graph search algorithms is the better in terms of space
complexity? Explain.
the depth-first search
versus
the breadth-first search

{b) If the breadth-first search is used, which of the following search directions is the better
in terms of the worst-case time complexity? Explain.
searching from node P with the adjacency lists of G
versus
searching from node Q with the inverse adjacency lists of G



5.{10%) Use a recursion tree to determine a good asymptotic upper bound on the recurrence
T(n) = 2T(n/2) + 8(n).

6.(15%) Describe briefly the Quicksort algorithm along with the time complexity. Show how
Quicksort can be made to run in O{nlgn) time in the worst case.

Hint: Selection algorithm.

7.{10%) Nlustrate the progresses of BFS and DFS, respectively, starting from vertex 3 on the
following graph. Show the state of each phase.

N N W N

@ | (b)

8.(15%) The single-source shortest paths problem can be solved by the Bellman-Ford algorithm.

(a) Find the shortest paths starting from vertex 1, going through all other vertices in
the following graph by the Bellman-Ford algorithm and show the state of each

phase.

(b) Describe briefly the Bellman-Ford algorithm along with the time complexity.




