國立臺灣海洋大學 103 學年度研究所碩士班招生考試試題

考試科目:控制系統(含線性系統理論)

系所名稱:電機工程學系碩士班控制組

1. 答案以橫式由左至右書寫。2. 請依題號順序作答。

Figure 1: unity feedback system

Problem 1: Consider the system setup in Figure 1 with

20 %

$$G(s) = \frac{1}{s+2}$$
 and $C(s) = \frac{K}{s+K}$.

- Plot the root locus for K > 0 and compute its break points.
- Can you improve the steady-state error by designing K?

Problem 2: Consider the system setup in Figure 1 with

20 %

$$G(s) = \frac{1}{s(s-1)}$$
 and $C(s) = K(s+0.5)$ (PD-controller).

- Find the stabilizing range of K by Routh criterion.
- Verify it again using Nyquist stability criterion.

Problem 3: Consider the system setup in Figure 1 with

20%

$$G(s) = \frac{1}{s^2}$$
 and $C(s) = K \frac{s+a}{s+b}$ (lead controller).

- In case without controller (C(s) = 1), what is the phase margin?
- Design K, a, b such that the system has crossover frequency $\omega_c = 2$ rad and PM = 30° .

Problem 4: Consider the system

$$\dot{x}(t) = Ax(t) + Bu(t)
= \begin{bmatrix} 0 & 2 \\ -1 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 2 \\ -1 \end{bmatrix} u(t); \quad x(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}
y(t) = Cx(t)
= \begin{bmatrix} -1 & -3 \end{bmatrix} x(t)$$

- Transform the system (A, B, C) to $(\bar{A}, \bar{B}, \bar{C})$ with \bar{A} being diagonal. Conclude the controllability of the system.
- Compute the zero input response of the system.

Problem 5: Consider the system

$$\dot{x}(t) = Ax(t) + Bu(t)
= \begin{bmatrix} 0 & 1 & 0 \\ 6 & 5 & 0 \\ 0 & 0 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} u(t)$$

- Is the system completely controllable?
- Can you design a state feedback u(t) = -Kx(t) + v(t) such that all eigenvalues are at the same location?