## 國立聯合大學 101 學年度碩士班考試招生

電機工程研究所 入學考試試題

科目: 工程數學

第\_1\_頁共\_2\_頁

## Show the details of your work.

- 1. Find the Laplace transform, if:
  - (A). (5%)  $f(t) = \delta(t-a)$ .
  - (B). (10%) f(t) is a piecewise continuous function with period T.
- 2. Consider a linear ODE y''(t) + 6y'(t) + 9y(t) = r(t).
  - (A). (5%) If r(t) = 0, find a general solution.
  - (B). (10%) Suppose  $y_1$ ,  $y_2$  are linearly independent solutions and  $r(t) = 2e^{-3t}$ . Find a particular solution in the form  $y_p = u_1y_1 + u_2y_2$ .
- 3. Given  $f(z) = \frac{1}{z^2(z-1)}$ ,
  - (A). (5%) Find the residues at its poles.
  - (B). (10%) Determine the value of  $\int_C f(z)dz$ , when C is the circle  $\left|z \frac{1}{3}\right| = 1$ .
- 4. Determine the Fourier transform and roughly sketch the results.
  - (A). (5%) The function  $x(t) = e^{-2 \cdot |t|}$ .
  - (B). (10%) The periodic function  $y(t) = 5 \cdot \cos(\omega \cdot t)$  with  $\omega = 2 \ rad/s$ .

## 國立聯合大學 101 學年度碩士班考試招生

電機工程研究所 入學考試試題

科目: 工程數學

第\_2\_頁共\_2\_頁

5. (20%) Consider the following linear system Ax = b.

- (A). Find the column space C(A).
- (B). Find the Null space N(A).
- (C). Find the whole solution of the system.
- (D). Find the basis of row space  $C(A^T)$ .
- (E). Find the basis of left null space  $N(A^T)$ .
- 6. **(20%)** Please indicate whether each of the following statements is always true or sometimes false. Justify your answer by giving a logical argument otherwise the score will not be counted.
  - (A). In the case of Ax = b is inconsistent, the solution of  $A^T A\hat{x} = A^T b$  is better than  $A\hat{x} = p$  with  $p = A(A^T A)^{-1} A^T b$ .
  - (B). All the vectors in the null space of  $A \lambda_1 I$  are the eigenvectors of eigenvalue  $\lambda_1$ .
  - (C). If the coefficient matrix of the homogeneous system of equations Ax = b is a square matrix with determinant  $|A| \neq 0$ , hen a solution is uniquely given.
  - (D). For a linear non-homogeneous system Ax = b, if we have  $rref(A) = \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix}$ , that means the system always have infinitely many solutions.
  - (E). If the dimension of null space  $N(A \lambda I)$  is more than one, imply that A has repeated eigenvalues.