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1. Solve the following homogeneous differential equation with the specified auxiliary
conditions: (20%)
Ey@) &y _dyt) _
dr’ dar* dr
2. For the continuous-time periodic signal

¥y =0, y0)=1, y'(0)=1, y"(0)=-2

x(t) =2+ cos(%’fr) 4 sin(%” 0,

determine the fundamental frequency wq and the Fourier series coefficients a; such that

<5}

x(0)= Y ae’™. (20%)

k=-w

3. Determine the Fourier series representations for the following signal: (20%)
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4. Consider the Fourier transform pair
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(a) Use the appropriate Fourier transform properties to find the Fourier transform of fe d .

(10%)
(b) Use the result from part (a), along with the duality property, to determine the Fourier
transform of

4 .
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5. Consider the signal x(¢) =e™u(t—1) , and denote its Laplace transform by X(s).

(a) Evaluate X(s) and specify its region of convergence. (10%)

(b) Determine the values of the finite numbers 4 and #, such that the Laplace transform G(s)
of g(t)= Ae™u(~t—t,) has the same algebraic form as X(s). What is the region of

convergence corresponding to G(s)? (10%)




