國立聯合大學 101 學年度碩士班考試招生

		材料科學工程系		入鸟	學考試	注試	題
科	目:	普通熱力學	第	parament 4	頁共	1	頁

- 1. An ideal gas (Cp/Cv = 5/3) Carnot cycle rejects 1000 kW of heat to an energy reservoir at 0°C, and increases the pressure to 10 times larger during the isentropic compression process. What is the power produced by this Carnot cycle? (15%)
- 2. A piston/cylinder device contains 2 kg steam at 100 kPa and 320°C. It is now undergoes an isothermal reversible process to a final pressure of 600 kPa. Determine the heat transfer of this process. (15%)
- 3. Calculate the entropy change (J/K) for 1 mole Fe as which is changed from state 1 (298 K, 1 atm) to state 2 (298 K, 50 atm)? The atomic mass of Fe is 55.85, the density is 7.87 g /cm³, and the thermal expansion coefficient is 3.0×10^{-5} K⁻¹at 298 K. Assume these values are independent on the pressure in the range $1 \sim 100$ atm. (15%)
- 4. A piston/cylinder device contains 6.8 kg Helium (He) at 300 K and specific volume 3.0 m³/kg. It is now undergoes a reversible compression process to a final state (366 K and 0.6 m³/kg). (a) Determine the entropy change of this reversible process. (b) If the compression process is irreversible. What is the entropy change for this process? (gas constant $R_{He} = 2.0769$ kJ/kg-K; average constant volume specific heat of He $C_v = 3.1156$ kJ/kg-K) (20%)
- 5. To prove that it is impossible to construct an engine which is more efficient than a reversible engine operating between the same two given reservoirs. (15%)
- 6. For the dissociation of ammonia gas according to

$$2NH_{3(g)} = 3H_{2(g)} + N_{2(g)}$$

$$\Delta G^o = 87,030 - 25.8 \text{ T lnT} - 31.7 \text{ T} \quad \text{(joules)}$$

Calculate the equilibrium partial pressure of N_2 in the system at 400°C and a total pressure of 1 atm. (20%)