## 國立臺灣科技大學103學年度碩士班招生試題

系所組別: 光電工程研究所碩士班

科 目: 電磁學

(總分為100分)

1. A coaxial cable is composed of an inner solid cylindrical conductor of radius a and a cylindrical shell of negligible thickness with radius b where b > a. The spacing between the conductor and the outer shell is filled with a material with a dielectric constant  $\kappa$ . Find the capacitance per unit length of this cable (10%).

2. Fig. 1 shows a rectangular loop carrying current  $I_2$  is placed close to a straight infinitely long conductor carrying current  $I_1$ . (a) Find the magnetic flux that goes through the loop (10%). (b) Obtain an expression for the magnetic force experienced by the loop (10%).



Fig. 1

3. An infinitely long insulating cylinder of radius R has a volume charge density that varies with the radius as:  $\rho = \rho_0 \left( a - \frac{r}{b} \right)$  where  $\rho_0$ , a and b are positive constants and r is the distance from the axis of the cylinder. Find the magnitude of the electric field at radial distances (a) r < R (10%) and (b) r > R (10%).



## 國立臺灣科技大學103學年度碩士班招生試題

系所組別: 光電工程研究所碩士班

科 目: 電磁學

(總分為100分)

- 4. A submerged isotropic light source is at a distance of 3 m below the water surface. Find the surface area of light seen on the surface. The relative permittivity of water at optical frequencies is 1.75 (8%).
- 5. A lossless transmission line having the characteristic impedance  $Z_0 = 125 \Omega$  is operating at  $\omega = 4.5 \times 10^8$  rad/s. If the velocity on the line is  $2.5 \times 10^8$  m/s, determine:
  - (a) The inductance per unit length in  $\mu H/m$  (8%).
  - (b) The capacitance per unit length in pF/m (8%).

If the lossless transmission line is terminated with a load  $Z_L$ , which consists of a 0.8  $\mu H$  inductor in series with a 105  $\Omega$  resistor, determine:

- (c) The reflection coefficient ( $\Gamma$ ) (10%).
- (d) The voltage standing-wave ratio (S) (8%).
- 6. A symmetric slab waveguide is designed to support only a single pair of TE and TM modes at wavelength  $\lambda = 1.6 \mu m$ . The slab thickness is to be 4.0  $\mu m$ , and the refractive index of the surrounding material is 3.5. Please find the maximum value of the refractive index of the slab waveguide (8%).

