國立臺灣科技大學103學年度碩士班招生試題

系所組別: 材料科學與工程系碩士班丙組

科 目: 材料導論

(總分為100分)

1. Calculate the bonding energy and bonding length of the $X^+ - Y^-$ by using the attractive and repulsive energies E_A and E_R as below

$$E_A = \frac{-2.59}{r}$$
, $E_R = \frac{4.28 \times 10^{-5}}{r^{10}}$ (10 points)

(Note: unit of r is nm and unit of E_A and E_R are eV)

- 2. Element Platinum (Pt) is one of well-known materials for catalysts.
- (1) Draw the schamite diagrams and calculate planar densities (PD) for the three baise planes of (100), (110) and (111) for Pt. (15 points)
- (2) Based on the result of (a), please predict the surface energy order (from small to large) for these three planes and explain why. (5 points)
- (3) As a materials engineer, please comment which plane (from (100), (110) and (111)) has the highest reactivity for catalysis applications. (5 points)
 (Hint: Pt has the crystallographic structure of face centered cubic and atomic radius of

0.177nm)

- 3. The study of failure engineering is a very important for the field of materials scinece.
- (1) Please point out the difference between trasgranular and intergranular fractures. (5 Points)
- (2) Describe the structural changes for the fatigues of ductile metal after cyclic stresses (10 Points)
- 4. An *n*-type semiconductor has band gap energy (E_g) of 2 eV, donor level (E_D) of 0.05 eV and work function (ϕ_S) of 4 eV.
 - (1) Draw the energy levels of this semiconductor and the dependence of the Fermi energy (E_F) on temperature (T). [5 points]
 - (2) Draw the electron concentration versus temperature $(n_e T)$ curve of this semiconductor and mark different regions of electrical conductions. [5 points]
 - (3) Draw the energy band structures for rectifying contact and ohmic contact between a metal and this semiconductor. [5 points]
 - (4) Draw the current-voltage (I-V) curves for ohmic and Schottky contacts. [5 points]

國立臺灣科技大學103學年度碩士班招生試題

系所組別: 材料科學與工程系碩士班丙組

科 目: 材料導論

(總分為100分)

5. Addition of CaO to ZrO₂ forms a solid solution with cubic fluorite structure. We can write the defect reaction as

$$CaO(s) \longrightarrow Ca_{Zr}^{"} + O_O + V_O^{\bullet \bullet}$$

- (1) Give definitions of the three products in above reaction. [5 points]
- (2) Write the defect reaction for the addition of Y₂O₃ to ZrO₂. [5 points]
- (3) Why can the addition of CaO prevent crack of ZrO₂ during cooling? [5 points]
- 6. The Cu–Ag system is eutectic with maximum solid solubility of 8.8 wt% Cu (for Ag-rich alloy) and 8.0 wt% Ag (for Cu-rich alloy) at the eutectic temperature (779°C). The Si–Ge system is isomorphous. Diffusion couples were made by joining pure Cu to pure Ag and pure Si to pure Ge, respectively. The diffusion couples were held at 700°C for a length of time to allow some solid-state diffusion. Fick's first law of diffusion is $J=-D\cdot dC/dx$.
 - (1) Draw the concentration profile $C_{Ag}(x)$ for the Cu–Ag diffusion couple. [5 points]
 - (2) Draw the concentration profile $C_{Si}(x)$ for the Si-Ge diffusion couple. [5 points]
 - (3) Derive Fick's second law of diffusion. [5 points]

