國立臺灣科技大學103學年度碩士班招生試題

系所組別: 材料科學與工程系碩士班甲組

科 目: 有機化學

(總分為100分)

1. Predict the products of the following reactions. (35%)

$$(3\%)$$

$$(4) \qquad \qquad AICI_3 \qquad \qquad (3\%)$$

(5)
$$O_2N$$
—Br $NaOH$ Heat

(6) 2 MgBr + CI
$$\frac{1. \text{ ether solvent}}{2. \text{ H}_3\text{O}^+}$$
 (3%)

$$(9) \qquad \begin{array}{c} \text{MgBr} \\ + & \text{CO}_2 \end{array} \qquad \begin{array}{c} \\ \\ \hline \\ \text{H}_3\text{O}^+ \end{array}$$

(10)
$$O$$
 OEt + O 1. Na⁺⁻OEt, ethanol (3%)

(12)
$$+ N_H \xrightarrow{H_3O^+}$$

國立臺灣科技大學103學年度碩士班招生試題

系所組別: 材料科學與工程系碩士班甲組

科 目: 有機化學

(總分為100分)

2. Propose the mechanism of the follow polymerizations. (15%)

(1)
$$n = \left\langle \begin{array}{c} BF_{3}, H_2O \\ \end{array} \right\rangle$$
 (5%)

(2)
$$n \stackrel{O}{\longrightarrow} H \xrightarrow{H_2O, \text{ heat}} \stackrel{O}{\longrightarrow} n$$
 (5%)

(3)
$$n = \bigcap_{CN} \frac{BuLi}{CN} n$$
 (5%)

3. How can you explain the fact that *trans-*1-bromo-2-methylcyclohexane yields the non-Zaitsev elimination product, 3-methylcyclohexene on treatment with base? (3%)

4. Hydrocarbon **A** has the formula C_9H_{12} and absorbs 3 equivalents of H_2 to yield **B**, C_9H_{18} , when hydrogenated over a Pd/C catalyst. On treatment of **A** with aqueous H_2SO_4 in the presence of mercury(II), two isomeric ketones, **C** and **D**, are produced. Oxidation of **A** with KMnO₄ gives a mixture of acetic acid (CH₃COOH) and the tricarboxylic acid E. Propose structures for compounds **A** $^{\sim}$ **D**, and write the reactions. (12%)

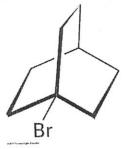
$$\begin{array}{c} \mathsf{CH_2COOH} \\ \mathsf{HOOCH_2C-C-CH_2COOH} \\ \mathsf{H} \end{array}$$

5. How might you use a Suzuki-Miyaura coupling to prepare the following biaryl compound? Show the two potential reaction partners. (4%)

$$H_3CO$$
 CO_2CH_3

國立臺灣科技大學103學年度碩士班招生試題

系所組別: 材料科學與工程系碩士班甲組


科 目: 有機化學

(總分為100分)

6. Polycarbonate of bisphenol A is a highly transparent and tough material. It can be used as optical discs, containers, plastic glasses, and lenses. One of the two compounds used for preparing polycarbonates is bisphenol A.

HO
$$\leftarrow$$
 CH₃ OH + ? \leftarrow CH₃ O \leftarrow CH₃ O \leftarrow O \leftarrow Polycarbonate

- (1). Please finish the chemical reaction for the preparation of polycarbonates as shown above. (3%)
- (2). Bisphenol A is prepared from phenol and acetone in an acidic condition. What are the chemical reactions involved? (3%) Please show the chemical reaction and mechanism. (3%)
- 7. An unknown hydrocarbon $\bf A$ with the formula C_6H_{12} reacts with 1 molar equivalent of H_2 over palladium catalyst. Hydrocarbon $\bf A$ also reacts with OsO_4 to give diol $\bf B$. When oxidized with $KMnO_4$ in acidic solution, $\bf A$ gives two fragments. One fragment is propanoic acid $CH_3CH_2CO_2H$, and the other fragment is ketone $\bf C$. What are the structures of $\bf A$, $\bf B$, and $\bf C$? Write all reactions and show your reasoning. (6%)
- 8. Please draw the chemical structure of the following polymers. (12%)
 - (1). polyvinylalcohol (3%)
 - (2). Kevlar fiber (3%)
 - (3). Teflon (3%)
 - (4). poly(3-hexylthiophene) (3%)
- 9. The following tertiary alkyl bromide does not undergo a nucleophilic substitution reaction by either $S_N 1$ or $S_N 2$ mechanisms. Explain. (4%)

