國立臺北科技大學 103 學年度碩士班招生考試

系所組別:3520 化學工程與生物科技系化學工程碩士班乙組

第二節 物理化學 試題

第一頁 共一頁

- 1.本試題共7題,配分共100分。
 2.請標明大題、子題編號作答,不必抄題。
- 3.全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. The equilibrium constant K_c for the hydrolysis of adenosine triphosphate (ATP) to adenosine diphosphate (ADP) and phosphate is 1.66×10^5 mol dm⁻³ at 37°C, and ΔH° is -20.1 kJ mol⁻¹. Calculate ΔS° for the hydrolysis at 37°C. On the assumption that ΔH° and ΔS° are temperature independent, calculate K_c at 20°C. (15%)
- 2. (a) Calculate the emf at 298.15 K for the cell: (7%)

T1 | TlBr | HBr(unit activity) | H₂(1 bar), Pt

(b) Calculate ΔH for the cell: (7%)

Tl | Tl⁺(unit activity), H⁺(unit activity) | H₂(1 bar), Pt

For the half-cell: $Tl^+ + e^- \rightarrow Tl$, $E^\circ = -0.34$ V, $\partial E/\partial T = -0.003$ V K⁻¹ and $K_{sp}(\text{TlBr}) = 10^{-4} \text{ mol}^2 \text{ dm}^{-6}.$

3. The entropy of argon is given to a good approximation by the expression

$$S_m / J K^{-1} \text{ mol}^{-1} = 36.36 + 20.79 \ln(T/K)$$

Calculate the change in Gibbs energy of 3 moles of argon if it is heated at constant pressure from 25°C to 60°C. (15%)

4. The following are the volumes of ammonia, reduced to STP, adsorbed by 1 g of charcoal at 0°C:

Make a plot to see if the data are consistent with the Langmuir isotherm. If so, evaluate the equilibrium constants K and V_0 , the volume adsorbed when the surface is saturated. (15%)

5. Someone proposed the following mechanism for a unimolecular gas reaction:

$$A + A \xrightarrow{k_1} A^* + A$$

$$A^* \xrightarrow{k_2} Y + Z$$

The species A^* is an energized molecule that is present in low concentrations. Apply the steady-state treatment to A^* and obtain an expression for the rate in terms of [A], k_1 , k_{-1} and k_2 . Show that the mechanism predicts first-order kinetics at higher A concentrations and second-order kinetics at lower ones. (15%)

- 6. The density of water at 25°C is 0.997 g cm⁻³ and the surface tension is 7.12×10^{-2} N m⁻¹. Calculate the ratio between the vapor pressure of a mist droplet having a mass of 10^{-12} g and the vapor pressure of water at a plane surface. (13%)
- 7. The diffusion coefficient for horse hemoglobin in water is 6.3×10^{-11} m² s⁻¹ at 20°C. The viscosity of water at 20°C is 1.002×10^{-3} kg m⁻¹ s⁻¹ and the specific volume of protein is 0.76 cm³ g⁻¹. Assume the hemoglobin molecule to be spherical and to obey Stokes's law, and estimate its radius and the molecular weight. (13%)