國立臺北科技大學 103 學年度碩士班招生考試 系所組別:2401 光電工程系碩士班 第三節 電子學 試題(選考) 第一頁 共二頁 ### 注意事項 - 1. 本試題共六題,配分共 100 分。 - 2. 請標明大題、子題編號作答,不必抄題。 - 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。 #### 1.[15%] For the circuit in *Figure 1*, we wish to select appropriate values for C_{C1} , C_{C2} , and C_{E3} , which has $R_B = 100 \text{ k}\Omega$, $R_C = 8 \text{ k}\Omega$, $R_L = 5 \text{ k}\Omega$, $R_{sig} = 5 \text{ k}\Omega$, $\beta = 100$, $g_m = 40 \text{ mA/V}$, and $r_\pi = 2.5 \text{ k}\Omega$. It is required to have $f_L = 100 \text{ Hz}$. Figure 1 #### 2.[10%] For the circuit in *Figure 2*, let diode cut-in voltages are $V_r = 0.6V$ and assume the input voltage varies over the range $0 \le v_I \le +10V$. Plot V_O versus V_I . Figure 2 #### 3.[10%] Calculate the built-in potential and the depletion width for a silicon p-n junction diode with N_A (acceptor) = 10^{18} cm⁻³ and N_D (donor) = 10^{15} cm⁻³ at 300 K. Given silicon dielectric constant $\epsilon_{si} = 11.7 \times 8.85 \times 10^{-14}$ F/cm, $q = 1.6 \times 10^{-19}$ coul, $n_i^2 = 1 \times 10^{20}$ cm⁻⁶, kT/q = 25 mV. #### 4.[20%] Transistor Q_1 in the circuit of *Figure 4* is operating as a CE amplifier with an active load provided by transistor Q_2 , which is the output transistor in a current mirror formed by Q_2 and Q_3 . - (a) Neglecting the finite base currents of Q_2 and Q_3 and assuming that their $V_{BE} \cong 0.7 \text{ V}$ and that Q_2 has five times the area of Q_3 , find the value of I. - (b) If Q_1 and Q_2 are specified to have $|V_A| = 50V$, find r_{01} and r_{02} and hence the total resistance at the collector of Q_1 . - (c) Find $r_{\pi 1}$ and $g_{m 1}$ assuming that $\beta_1 = 50$. - (d) Find R_{in}, A_v, and R_o. 注意:背面尚有試題 Figure 4 #### 5.[25%] Figure 5 shows a feedback current amplifier formed by cascading an inverting voltage amplifier μ with a MOSFET Q. The output current Io is the drain current of Q. The feedback network, consisting of resistors R_1 and R_2 , senses an exactly equal current, namely, the source current of Q, and provides a feedback current signal that is mixed with Is at the input node. Note that the bias arrangement is not shown. The amplifier μ can be implemented in a variety of ways, including by means of an opamp, a differential amplifier, or a single-ended inverting amplifier. The simplest approach is to implement μ with a CS MOSFET amplifier. However, in such a case the loop gain will be very limited. Assume that the amplifier μ has an input resistance R_{id} , an open-circuit voltage gain μ , and an output resistance r_{ol} . If the loop gain is large, find numerical values for A_f , R_i , R_{in} , R_o , and R_{out} for the following case: $\mu = 1000$ V/V, $R_s = \infty$, $R_{id} = \infty$, $r_{ol} = 1$ k Ω , $R_1 = 10$ k Ω , $R_2 = 90$ k Ω , and for Q: $g_m = 5$ mA/V and $r_o = 20$ k Ω . (5% each) Figure 5 ## 6.[20%] The active biquard filter as shown contains passive elements and ideal operational amplifiers, as shown in *Figure 6*. Please derive the transfer functions of $V_o(s)/V_i(s)$. Figure 6