國立臺北科技大學 103 學年度碩士班招生考試

系所組別:2240 電子工程系碩士班丁組

第三節 電子學 試題

第一頁 共二頁

注意事項

- 1. 本試題共六題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. For the circuit of Fig. 1, find I_Z for the following load resistors. Then find the power dissipated P_D by the Zener.
- (a) $R_L = 3 \text{ k}\Omega$. (5%)
- (b) $R_L = 1 \text{ k}\Omega. (5\%)$

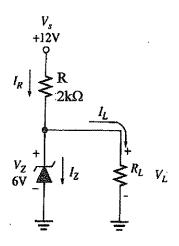


Fig.1 Zener diode circuit for problem 1

- 2. Assume each diode in the circuit shown in Fig.2 has a turn-on voltage of $V_r = 0.7$ V.
- (a) Please calculate the current I_{D2} and the voltage V_{O} . (10%)
- (b) For the case when $R_1 = 5 \text{ k}\Omega$ and $R_2 = 15 \text{ k}\Omega$, please calculate the current I_{D1} and I_{D2} . (10%)

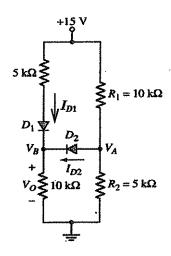


Fig.2 Multidiode circuit for problem 2

- 3. Consider the circuit in Fig. 3. Assume each transistor has parameters of $\beta = 100$ and $V_{BE}(\text{on}) = 0.7\text{V}$.
 - (a) Find the Thevenin voltage V_{TH} for the this circuit. (5%)
 - (b) Determine the value of I_{E1} . (5%)
 - (c) Determine the value of I_{E2} . (5%)
 - (d) Determine the value of V_{EC2} (5%).

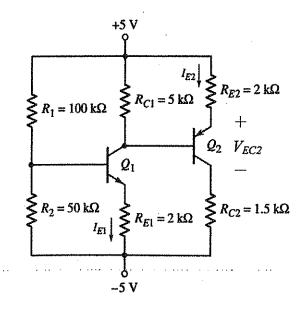


Fig.3 Multistage transistor circuit for problem 3

注意: 背面尚有試題

- 4. Find the output voltage v_o for the circuit in Fig. 4 if
- (a) $R_2 = 1 \text{ k}\Omega$. (5%)
- (b) $R_2 = 4 \text{ k}\Omega. (5\%)$

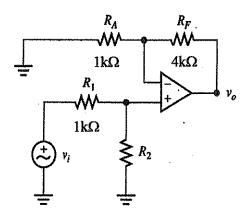


Fig.4 Circuit for problem 4

- 5. Assume the transistor and circuit parameters in Fig. 5 are: $\beta = 100$ and $V_{CC} = 12$ V, $V_{BE}(\text{on}) = 0.7$ V, $R_C = 6 \text{ k}\Omega$, $R_B = 50 \text{ k}\Omega$, $V_{BB} = 1.2$ V and $V_T = 0.026$ V.
- (a) Determine the Q-point values of I_{CQ} and V_{CEQ} . (10%)
- (b) Calculate the small-signal voltage gain A_{ν} of the bipolar transistor circuit. (10%)

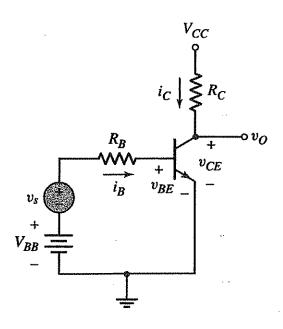


Fig.5 Circuit for problem 5

- 6. For the circuit of Fig. 6, find
- (a) The gain and f_L for the high-pass filter. (4%)
- (b) The gain and f_H for the low-pass filter. (4%)
- (c) The total gain and bandwidth of this filter. (4%)
- (d) The center frequency f_o and the Q of the filter. (4%)
- (e) Draw the Bode plot for the complete filter. (4%)

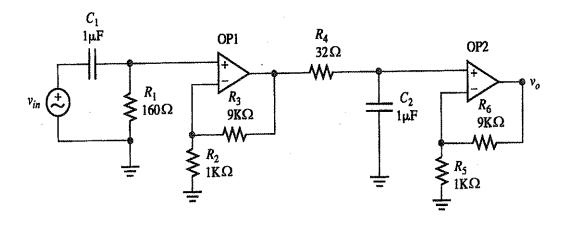


Fig.6 Filter circuit for problem 6

I