國立臺北科技大學 103 學年度碩士班招生考試

系所組別:2152 電機工程系碩士班戊組

第三節 離散數學 試題 (選考)

第一頁 共二頁

- 1. 本試題共 12 題,配分共 100 分。 2. 請標明大題、子題編號作答,不必抄題。 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. (10%) Use mathematical induction to prove that

(a)
$$(5\%) \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$
.

- (b) $(5\%) \sum_{i=1}^{n} f_{2i-1} = f_{2n}$, where f_i is the *i*th Fibonacci number $(f_0=0, f_1=1, \text{ and } f_i=f_{i-1}+f_{i-2}, i>1)$.
- 2. (10%) Suppose that X and Y are events such that p(X)=0.5 and $p(X \cup Y)=0.7$. Find p(Y) in each of the following cases:
- (a) (2%) X and Y are disjoint.
- (b) (4%) X and Y are independent.
- (c) (4%) p(Y|X)=0.3.
- 3. (10%) Let \leq_x be a relation on $\mathbb{Z}\times\mathbb{Z}$ such that $(a,b)\leq_x (c,d)$ if and only if $a\leq c$ and $b\leq d$, where $a, b, c, d \in \mathbb{Z}$ and \mathbb{Z} is the set of integer numbers.
- (a) (3%) Prove that \leq is a partial order.
- (b) (3%) Draw the Hasse diagram of the relation \leq_x for $\mathbb{Z} = \{1, 2, 3\}$.
- (c) (4%) How many maximal chains does the Hass diagram of part (b) have? (A maximal chain is one that is not a subset of another chain.)
- 4. (10%) Use Huffman coding to encode the following symbols with the probabilities of occurrence listed: a: 0.45, b:0.13, c:0.12, d:0.16, e:0.09, f:0.05.
- (a) (5%) Draw the corresponding Huffman tree.
- (b) (2%) List the code for each symbol.
- (c) (3%) What is the average number of bits used to encode a symbol?

- 5. (10%) Solve the following recurrence relations.
- (a) (5%) $a_n=6a_{n-1}-8a_{n-2}, n \ge 2, a_0=4, a_1=14.$
- (b) (5%) $a_n = \frac{2}{3} a_{n-1} \frac{1}{9} a_{n-2}, n \ge 2, a_0 = 1, a_1 = 1.$
- 6. (10%) For a given alphabet $\Sigma = \{0,1\}$, let L be the language consisting of all strings which have an even number of 1's.
- (a) (5%) Draw a state diagram for a deterministic finite automata that recognizes the language L.
- (b) (5%) Give a regular expression that specifies the language L.
- 7. (10%) Give a tight upper bound for each following function using Big-O notation.
- (a) $(2\%) f(n) = 5000 n \log n + n^2$
- (b) $(2\%) f(n)=10^{10}+10!$
- (c) $(2\%) f(n) = \sum_{i=1}^{n} 2^{10}$
- (d) $(2\%) f(n) = \sum_{i=1}^{n} \sum_{j=1}^{i} 2^{-j}$
- (e) $(2\%) f(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} n^{-j}$
- 8. (10%) For each of the following determine whether \otimes is an associative operation. Explain your answer. Suppose that \mathbb{R} is the set of real numbers.
- (a) (2%) Define \otimes on \mathbb{R} by letting $a \otimes b = ab + 1$.
- (b) (2%) Define \otimes on \mathbb{R} by letting $a \otimes b = a + b 1$.
- (c) (2%) Define \otimes on \mathbb{R} by letting $a \otimes b = a^b$.
- (d) (2%) Define \otimes on \mathbb{R} by letting $a \otimes b = \frac{a}{b}$.
- (e) (2%) Define \otimes on \mathbb{R}^2 by letting $(a,b)\otimes(c,d)=(ac,bc+d)$.
- 9. (10%) For each of the following, determine with proof whether or not it is a group.
- (a) (5%) The set $\{1, -1, \sqrt{-1}, -\sqrt{-1}\}$ under multiplication.
- (b) (5%) The set $\{3n \mid n \in \mathbb{Z}\}$ under addition, where \mathbb{Z} is the set of integer numbers.

注意:背面尚有試題

10. (2%) Which one of the following propositions is a tautology?

- $(1) (p \rightarrow q) \land (\neg p \rightarrow \neg q)$
- $(2) (p \lor q) \rightarrow (\neg p \lor \neg q)$
- $(3) (p \land \neg q) \lor (\neg p \land \neg q)$
- $(4) (q \land (p \rightarrow \neg q)) \rightarrow \neg p$

11.(2%) Which one of the following propositions logically implies all the others?

- (1) p Vq
- $(2) p \rightarrow q$
- (3) $q \land (p \rightarrow \neg q)$
- $(4) (p \land q) \rightarrow (p \lor q)$
- 12. (6%) Determine whether each of the following statements is true or false. If false, explain why or provide a counterexample. If true, explain why. Suppose that the universe of discourse of each variable is the set of integer numbers.
- (a) $(2\%) \exists x \forall y (x^2 = y)$
- (b) (2%) $\exists x \forall y (x=y^2)$
- (c) (2%) $\exists x \exists y \forall z (z=2x+2y)$