國立臺北科技大學 103 學年度碩士班招生考試

系所組別:2140 電機工程系碩士班丁組

第二節 通訊原理 試題

第一頁 共一頁

- 1. 本試題共5題,配分共100分。 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. (30%) Briefly answer the following problems.
- (a) What is the power spectral density (PSD)? Please explain its physical meaning and application. (5%)
- (b) What is the Manchester code (or split code)? Please plot the symbols stand for symbol 1 and symbol 0, respectively, and also describe the feature of individual power spectrum. (5%)
- (c) Why orthogonal frequency division multiplexing (OFDM) can approximately convert frequency selective fading channel into flat fading subchannels? (5%)
- (d) Describe the characteristics of additive white Gaussian noise (AWGN) from both the viewpoints of time domain and frequency domain. (5%)
- (e) What is the advantage of QPSK as compared to BPSK? (5%)
- (f) Why the noise performance of an AM receiver using envelope detection is always inferior to that of a DSB-SC receiver? (5%)
- 2. (15%) Find the Fourier transform (expressed by S(f)) for each of the following signals. Note that $\operatorname{sinc}(\lambda) = \frac{\sin \pi \lambda}{\pi^2}$.

(a)
$$s(t) = \operatorname{sinc}(2t - 20) \times e^{f(00\pi t)}$$
, (5%)

(b)
$$s(t) = e^{j(3t-5)}$$
, (5%)

(c)
$$s(t) = \cos[100\pi(t-5)]$$
. (5%)

- 3. (20%) Consider a pair of quadrature-modulated processes $X_1(t) = X(t)\cos(2\pi f_c t + \Theta)$ and $X_2(t) = X(t)\sin(2\pi f_c t + \Theta)$, where X(t) is a wide-sense stationary process, Θ is a random variable uniformly distributed over $[0, 2\pi]$ and is independent of X(t), f_c is a constant. Answer the following problems.
- (a) Calculate the cross-correlation function of $X_1(t)$ and $X_2(t)$, which is defined as $R_{12}(\tau) = E[X_1(t)X_2(t-\tau)]$. (10%)
- (b) What condition will make $R_{12}(\tau) = 0$? What is the physical meaning of $R_{12}(\tau) = 0$? (10%)
- 4. (15%) An FM system with $k_f = 10^6$ and carrier wave $c(t) = \cos 2\pi 10^8 t$ is shown below. Assume that $m(t) = \cos 2\pi 10^6 t$ volt.
- (a) Write down the equation of the resulting FM signal s(t) in terms of modulation index β , f_c and f_m . (5%)
- (b) Calculate the maximum and minimum instantaneous frequencies of s(t). (5%)
- (c) Estimate bandwidth of s(t) using Carson's rule. (5%)

- 5. (20%) A speech signal is transmitted using an *M*-ary PAM system. The sampling rate is 10⁵ samples/sec and each sample is quantized to one of 256 levels (i.e.,8-bit quantization). Determine the minimum required bandwidth for transmitting the PAM wave if
 - (a) M=4 using an ideal Nyquist channel. (10%)
 - (b) M=16 using channel with raised cosine spectrum of $\alpha = 1$. (10%)