國立臺北科技大學 103 學年度碩士班招生考試

系所組別:1330 車輛工程系碩士班丙組

第二節 熱力學 試題

第一頁 共一頁

Company of the second

- 本試題共五題,配分共100分。
 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- -- 、(20%) A piston cylinder contains air at 1200 kPa, 850 K with a volume of $0.06\,m^3$. The piston is pressed against the upper stops, and it will float at a pressure of 800 kPa. If the air is cooled to 500 K, what is the process work and heat transfer?(Air $C_{\nu}=0.7176kJ/kg-K$)
- \equiv 、(20%) A wind turbine with rotor diameter of 25 m takes 35% of the kinetic energy out as the shaft work. If one day is with the atmospheric pressure 101.3 kPa, temperature $25^{\circ}C$, and wind speed of 30km/h, what power is produced?(Air $R = 0.287 \, kJ \, / \, kg - K$)
- \equiv 、(20%) A heat engine has a solar collector receiving 0.25 kW / m^2 inside which the transfer media is heated to 500 K. The solar energy powers the heat engine which rejects heat at 25 $^{\mathrm{0}}$ C . If the heat engine should deliver 3 kW, what is the minimum area (m^2) for the solar collector?
- contact. Find the change in entropy of the steel. (steel C = 0.46 kJ/kg - K)
- \pm `(20%) Carbon dioxide at 350 K, 200kPa is brought through a steady device, where it is heated to 630 K by a 800 K reservoir in a constant pressure process. Find the specific entropy generation. $(CO_2 C_p = 0.973kJ/kg - K)$

國立臺北科技大學 103 學年度碩士班招生考試

系所組別:1410、1420、1431、1432

能源與冷凍空調工程系碩士班甲、乙、丙組

第二節 工程數學 試題

第一頁 共一頁

注意事項

- 1. 本試題共四題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. Pleas solve the following first-order differential equations:

(a)(10%)
$$y' + 8x^3y^3 + 2xy = 0$$

(b)(10%)
$$y = xy' - (y')^2/4$$

(c)(10%)
$$xy' + 2y = 5x^3$$
, $y(1) = 3$

2. Pleas solve the following differential equations:

(a)(10%)
$$y^{(3)} + y^{(2)} - 2y' = 0$$
, $y(0) = 1$, $y'(0) = 2$, $y''(0) = 0$

(b)(10%)
$$x^2y'' - 2xy' + 2y = 0$$
, $y(1) = 1$, $y'(1) = 3$

(c)(10%)
$$(2x-3)^2y'' + (14x-21)y' + 4y = 0$$

3.(20%) Please solve the following problem by Power Series method.

$$2xy'' + (x+1)y' + y = 0$$

4. Please solve the following problems by Laplace Transform.

(a)
$$y'' + 2ty' - 4y = 1$$
, $y(0) = y'(0) = 0$ (10%)

(b)
$$\begin{cases} y_1' - 2y_1 - y_2 = 2e^{5t} \\ y_2' - y_1 - 2y_2 = 3e^{2t} \end{cases}, y_1(0) = y_2(0) = 0$$
 (10%)