國立臺灣師範大學 103 學年度碩士班招生考試試題

科目:自動控制 適用系所:機電工程學系

注意:1.本試題共2頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

1. Please describe (1)Linear system, (2)Time-invariant system, (3)Causal system. (15 分)

2. In an armature-controlled dc motor which is shown in Fig. 1, a voltage e_a is applied to the armature through an amplifier of gain K_A . The torque T_M developed by motor drives the load with angular velocity ω .

 $K_{\rm T}$, $K_{\rm b}$ = motor torque and back emf constant

 R_a = armature winding resistance

 $L_{\rm a}$ = armature winding inductance

 $T_{\rm w}$ = disturbance load torque

J = moment of inertia of the motor

rotor with attached mechanical load

Fig. 1

B =viscous-friction coefficient of the motor rotor with attached mechanical load ω, θ = angular velocity and displacement of the motor rotor

Assume the block diagram of the above dc motor drive system is shown in Fig. 2

- (1) Find $I_1(s)$, $I_2(s)$, $I_3(s)$, $I_4(s)$, $G_1(s)$, $G_2(s)$, $G_3(s)$, and $G_4(s)$. (16 %)
- (2) Describe the overall system transfer function. (4 分)

國立臺灣師範大學 103 學年度碩士班招生考試試題

3. Given a unit feedback system block diagram as shown in Fig. 3.

Fig. 3

- (1) Describe the overall system transfer function. (5 分)
- (2) Is the system stable or not? Please proof your answer. (5 分)
- (3) Find the response y(t) to the input ①step=2.5r(t) ②ramp=2.5 t r(t) in time domain of this system. (10 %)
- (4) Calculate the system steady state error of step and ramp response. (5 分)
- 4. The system G(s) in Fig. 4 has three poles(+5j, -5j, and -2) and no zeros. The controller C(s) has four types $(1)C(s)=K_P$, $(2)C(s)=K_P+K_I/s$, $(3)C(s)=K_P+K_D s$, and $(4)C(s)=K_P+K_I/s+K_D s$ (where K_P , K_I , and K_D are all positive numbers). Which type of controller can move all the closed-loop poles to the left half plane? Please proof your answer. $(20 \ \%)$

Fig. 4

5. How to determine the bandwidth of the closed-loop control system? Please explain the reasons why the bandwidth is a good measure of the speed of the system response. (20 分)