國立臺灣師範大學 103 學年度碩士班招生考試試題 科目:無機化學 適用系所:化學系 注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。 - (1) <u>Draw</u> the crystal field splitting energy diagram of the d-block complexes that have a trigonal Bipyramidal geometry. (10 points) - (2) A tetracoordinated complex Mabcd is known to have stereoisomers. Please <u>draw</u> the 3-D structures for all the possible stereoisomers. (M stands for the central metal ion and a, b, c, and d each stand for a monodentate ligand) (10 points) - (3) <u>Draw and mark</u> the symbols (Δ and Λ) for the enantiomers of Cr(acac)₃. (10 points) - (4) The magnetic moment of $[Mn(en)_2Br(NO)]^+$ is 6.06 $\mu_B(B.M.)$ and en is the abbreviation for ethylenediamine. Please answer the following questions. (20 points) - (a) Draw the structure for en. - (b) How many lone pair electrons does the central Mn ion have? - (c) Draw the d-orbital energy splitting diagram for the Mn ion. - (d) <u>Draw all stereoisomers</u> for [Mn(en)₂Br(NO)]⁺. - (5) Calculate the lattice energy for NaCl_(s) (Na⁺_(g) + Cl⁻_(g) → NaCl_(s)) by Born-Haber cycle. Ionization energy of Na_(g) is 496 kJ/mol, sublimation of Na_(s) is 108 kJ/mol, dissociation of Cl_{2(g)} is 244 kJ/mol, electron affinity of Cl_(g) is 349 kJ/mol, and formation of NaCl_(s) is −411 kJ/mol. (10 points) - (6) Which of the following species are nonpolar? (a) PH_3 (b) H_2Se (c) CH_2Cl_2 (d) IF_5 (e) NO_3^- (f) O_3 (g) SO_4^{2-} (h) NH_4^+ (i) I_3^- (j) PCl_5 (10 points) - (7) Construct the MO diagram of N_2 and use the diagram to explain why N_2 is a very stable molecule. (10 points) ## 國立臺灣師範大學 103 學年度碩士班招生考試試題 - (8) What is the ratio of the edge length of the unit cell for a body-centered cubic crystal to the radius of the atoms in the crystal? (10 points) - (9) The point group of Mn(CO)₅Cl is C_{4ν}. Please find the IR active modes for the CO stretching vibrations of Mn(CO)₅Cl? (10 points) | C40 | E | 2 <i>C</i> ₄ | C_2 | $2\sigma_{v}$ | $2\sigma_d$ | | | |------------------|---|-------------------------|-------|---------------|-------------|--------------------|-------------------| | $\overline{A_1}$ | 1 | 1 | 1 | 1 | 1 | Z | x^2-y^2 , z^2 | | A_2 | 1 | 1
1 | 1 | -1 | -1 | R_z | | | B_1 | 1 | -1 | 1 | 1 | -1 | | x^2-y^2 | | B_2 | 1 | -1 | 1 | -1 | 1 | | xy | | E | 2 | 0 | -2 | 0 | 0 | $(x, y)(R_x, R_y)$ | (xz, yz) |