國立臺灣師範大學 103 學年度碩士班招生考試試題

科目:無機化學 適用系所:化學系

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

- (1) <u>Draw</u> the crystal field splitting energy diagram of the d-block complexes that have a trigonal Bipyramidal geometry. (10 points)
- (2) A tetracoordinated complex Mabcd is known to have stereoisomers. Please <u>draw</u> the 3-D structures for all the possible stereoisomers. (M stands for the central metal ion and a, b, c, and d each stand for a monodentate ligand) (10 points)
- (3) <u>Draw and mark</u> the symbols (Δ and Λ) for the enantiomers of Cr(acac)₃. (10 points)
- (4) The magnetic moment of $[Mn(en)_2Br(NO)]^+$ is 6.06 $\mu_B(B.M.)$ and en is the abbreviation for ethylenediamine. Please answer the following questions. (20 points)
 - (a) Draw the structure for en.
 - (b) How many lone pair electrons does the central Mn ion have?
 - (c) Draw the d-orbital energy splitting diagram for the Mn ion.
 - (d) <u>Draw all stereoisomers</u> for [Mn(en)₂Br(NO)]⁺.
- (5) Calculate the lattice energy for NaCl_(s) (Na⁺_(g) + Cl⁻_(g) → NaCl_(s)) by Born-Haber cycle. Ionization energy of Na_(g) is 496 kJ/mol, sublimation of Na_(s) is 108 kJ/mol, dissociation of Cl_{2(g)} is 244 kJ/mol, electron affinity of Cl_(g) is 349 kJ/mol, and formation of NaCl_(s) is −411 kJ/mol. (10 points)
- (6) Which of the following species are nonpolar? (a) PH_3 (b) H_2Se (c) CH_2Cl_2 (d) IF_5 (e) NO_3^- (f) O_3 (g) SO_4^{2-} (h) NH_4^+ (i) I_3^- (j) PCl_5 (10 points)
- (7) Construct the MO diagram of N_2 and use the diagram to explain why N_2 is a very stable molecule. (10 points)

國立臺灣師範大學 103 學年度碩士班招生考試試題

- (8) What is the ratio of the edge length of the unit cell for a body-centered cubic crystal to the radius of the atoms in the crystal? (10 points)
- (9) The point group of Mn(CO)₅Cl is C_{4ν}. Please find the IR active modes for the CO stretching vibrations of Mn(CO)₅Cl? (10 points)

C40	E	2 <i>C</i> ₄	C_2	$2\sigma_{v}$	$2\sigma_d$		
$\overline{A_1}$	1	1	1	1	1	Z	x^2-y^2 , z^2
A_2	1	1 1	1	-1	-1	R_z	
B_1	1	-1	1	1	-1		x^2-y^2
B_2	1	-1	1	-1	1		xy
E	2	0	-2	0	0	$(x, y)(R_x, R_y)$	(xz, yz)