國立臺灣師範大學 103 學年度碩士班招生考試試題

科目:數學基礎 適用系所:資訊工程學系

注意:1.本試題共2頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

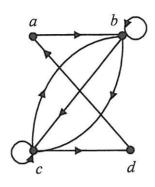
(1) Derive the equation of a plane in the x-y-z space, which contains the point (-1, 3, 2) and is perpendicular to the vector (6, 4, -9). (5 %)

- (2) Let A be an $n \times n$ nonsingular matrix. Then, the non-homogeneous system of equations AX = B has a unique solution. (a) The solution can be obtained using Cramer's rule. Give the formula of Cramer's rule. (b) Apply Cramer's rule to solve the system: $x_1 3x_2 4x_3 = 1$, $-x_1 + x_2 3x_3 = 14$, $x_2 3x_3 = 5$. (c) Find the unique function $f(x) = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$ that satisfies f(0) = 1, f'(0) = 2 and f''(0) = 0. (15 $\frac{1}{2}$)
- (3) Let A and B be $n \times n$ nonsingular matrices and $\det(A) = a \neq 0$ and $\det(B) = b \neq 0$. Answer (a) $\det(AB)$, (b) $\det(AB)^T$, (c) $\det(\det(A)A)$, (d) $\det(\det(A)B)$, and (e) $\det(\det(B)B)/\det(\det(B)A)$. (15 $\frac{1}{2}$)
- (4) Let $F: P \to P$ be defined by $F(a_0 + a_1 x + a_2 x^2) = 2(a_1 a_2) + (2a_0 + 3a_2)x + 3a_2 x^2$
 - (a) Let $A = \{1, x, x^2\}$ be a basis for P. Give the matrix M corresponding to mapping F with respect to A.
 - (b) Find the eigenvectors and the associated eigenvalues of M.
 - (c) Let B denote the basis of P that consists of the eigenvectors of M. Give the matrix M' corresponding to F with respect to basis B. (15 %)
- (5) Suppose that a and b are integers, $a \equiv 4 \pmod{13}$, and $b \equiv 9 \pmod{13}$. Find the integer c with $0 \le c \le 12$ such that $c \equiv a^2 + b^2 \pmod{13}$. (3 %)
- (6)Determine whether the relation represented by the zero-one matrix is an equivalence relation. (3 分)

$$\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}$$

國立臺灣師範大學 103 學年度碩士班招生考試試題

(7) Find the adjacency matrix of the given directed multigraph with respect to the vertices listed in alphabetic order. (5 分)



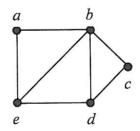
- (8) For the logical expression $Q \land (P \lor \neg R)$,
 - (a) Find its disjunctive normal form.
 - (b) Find its conjunctive normal form. (6 分)
- (9) Give the formula for the coefficient of x^k in the expansion of $(x^2 1/x)^{100}$, where k is an integer. (6 分)
- (10)Express gcd(252, 198) = 18 as a linear combination of 252 and 198. (6 分)
- (11) The Lucus numbers satisfy the recurrence relation

$$L_n = L_{n-1} + L_{n-2}$$
,

and the initial conditions $L_0 = 2$ and $L_1 = 1$.

Find an explicit formula for the Lucus numbers. (6 分)

(12)Determine whether the graph has a Hamilton circuit. If it does, find such a circuit. If it does not, give an argument to show why no such circuit exists. (6 分)



- (13) Answer "Yes" or "No" for the following questions.
 - (a) Is the function $f(n) = n^2 + 100$ from **Z** to **Z** one-to-one?
 - (b) Is the function $f(x) = (x^2 + 1)/(x^2 + 2)$ from **R** to **R** a bijection?
 - (c) If f and $f \circ g$ are onto, does it follow that g is onto? (9 %)