淡江大學 103 學年度碩士班招生考試試題

系別:數學學系

科目:機率與統計

考試日期:3月2日(星期日) 第3節

本試題共 大題,

頁

1.(10%) Let the random variable X has the p.m.f. $f(x) = \frac{(|x|+1)^2}{9}$, x = -1, 0, 1 Compute E(X), $E(3X^2 - 2X + 4)$ and Var(X).

2. (15%) Let the joint p.m.f. of X and Y be

$$f(x,y) = 1/4, (x,y) \in S = \{(0,0), (1,1), (1,-1), (2,0)\}.$$

- i) Compute $E(X \mid Y = 0)$ and $Var(X \mid Y = 0)$.
- ii) Find the covariance of X and Y.
- iii) Prove or disprove that X and Y are independent.
- 3. (10%) Customers arrive in a certain shop according to an approximate Poisson process at mean rate of 20 persons/hour. Let X denote the waiting time in minutes until the first customer arrival. Find the p.d.f. of X and then compute E(X) and Var(X).
- **4.**(10%) Let X_1, \dots, X_n be iid r.v.'s from uniform $(0, \theta)$ where θ is an unknown parameter. Find a complete sufficient statistic for estimating θ and then find the UMVUE of θ .
- 5.(20 %) Let $Y_i = \alpha + \beta X_i + \epsilon_i$, $i = 1, \dots, n$ be the equation between two random veriables X_i and Y_i . Let $\hat{\alpha}$, $\hat{\beta}$ be the least squares estimates of α and β , i.e. $\sum (Y_i \hat{\alpha} \hat{\beta} X_i)^2$ is a minimum.
- a). Prove that $\hat{\beta} = S_{XY}/S_{XX}$, $\hat{\alpha} = \bar{Y} \hat{\beta}\bar{X}$, where $S_{XY} = \sum [(Y_i \bar{Y})(X_i \bar{X})]$, $S_{XX} = \sum (X_i \bar{X})^2$.
- b). Show that $E\hat{\beta} = \beta$ and $E\hat{\alpha} = \alpha$.
- 6. (10%) Let X_1, \dots, X_n be iid from B(1, p). For testing $H_0: p \le 1/2$ v.s. $H_1: p > 1/2$ at $\alpha = 0.05$. Apply the Central limit theorem to determine the sample size n so that the probability of rejecting H_0 when p = 7/8 is 0.95.
- 7. (25%) Let X_1, X_2 and X_3 be i.i.d. random variables from $N(\mu, 12)$. Consider the test for $H_0: \mu = 0$ v.s. $H_1: \mu = 1$ with significance level 0.05.
- i). Construct a critical region A so that the test has level 0.05.
- ii). Find a confidence lower bound $L(X_1, X_2, X_3)$ such that $P(L(X_1, X_2, X_3) \le \mu) = 0.95$.
- iii). Are the two event " $\{X_1, X_2, X_3\} \in A$ " and " $L(X_1, X_2, X_3) > 0$ " equivalent?
- iv). Find the power of this test.
- v). Compute the p-value if we observe $X_1 = 1, X_2 = 0.96$ and $X_3 = 1.96$