科目：化工熱力學與化學反應 系所：化學工程及材料工程學系
工程
考試時間：100分鐘
（甲組）
本科原始成績：100分

Table：Values of the universal gas constant

$$
\begin{aligned}
\mathrm{R} & =8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~m}^{3} \mathrm{~Pa} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =83.14 \mathrm{~cm}^{3} \text { bar mol }^{-1} \mathrm{~K}^{-1}=8314 \mathrm{~cm}^{3} \mathrm{kPa} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =82.06 \mathrm{~cm}^{3}(\mathrm{~atm}) \mathrm{mol}^{-1} \mathrm{~K}^{-1}=62356 \mathrm{~cm}^{3}(\mathrm{torr}) \mathrm{mol}^{-1} \mathrm{~K}^{-1} \\
& =1.987(\mathrm{cal}) \mathrm{mol}^{-1} \mathrm{~K}^{-1}=1.986(\mathrm{Btu})(\mathrm{lb} \text { mole })^{-1}(\mathrm{R})^{-1} \\
& =0.7302(\mathrm{ft})^{3}(\mathrm{~atm})(\mathrm{lb} \mathrm{~mol})^{-1}(\mathrm{R})^{-1}=10.73(\mathrm{ft})^{3}(\mathrm{psia})(\mathrm{lb} \mathrm{~mol})^{-1}(\mathrm{R})^{-1} \\
& =1545(\mathrm{ft})\left(\mathrm{lb}_{\mathrm{f}}\right)(\mathrm{lb} \mathrm{~mol})^{-1}(\mathrm{R})^{-1}
\end{aligned}
$$

1．During the isothermal heat rejection process of a Carnot cycle，the working fluid experiences an entropy change of $-1.3 \mathrm{~kJ} / \mathrm{K}$ ．If the temperature of the heat sink is $35^{\circ} \mathrm{C}$ ，determine（a）the amount of heat transfer，（b）the entropy change of the sink，and（c）the total entropy change for this process．（18\％）

2．Under appropriate conditions A decomposes as follows：

$$
\mathrm{A} \xrightarrow{k_{1}=0.1 / \mathrm{min}} \mathrm{R} \xrightarrow{k_{2}=0.1 / \mathrm{min}} \mathrm{~S}
$$

R is to be produced from 1000 liter $/ \mathrm{hr}$ of feed in which $\mathrm{C}_{\mathrm{A} 0}=1 \mathrm{~mol} / \mathrm{liter}, \mathrm{C}_{\mathrm{R} 0}=\mathrm{C}_{\mathrm{S} 0}=0$ ．
（a）What size plug flow reactor will maximize the yield of R ，and what is the concentration of R in the effluent stream from this reactor？（12\％）
（b）What size mixed reactor will maximize the yield of R ，and what is $\mathrm{C}_{\mathrm{R}, \max }$ in the effluent stream from this reactor？（12\％）

3．A frictionless piston－cylinder device，initially contains $0.01 \mathrm{~m}^{3}$ of argon gas at 400 K and 350 kPa ．Heat is now transferred to the argon from a furnace at 1200 K ，and the argon expands isothermally until its volume is double．No heat transfer takes place between the argon and the surrounding atmospheric air，which is at 300 K and 100 kPa ．Determine（a）the useful work output，（b）the energy destroyed，and（c）the maximum work that can be produced during this process．（18\％）
4．For the two CSTRs in series， 40% conversion is achieved in the first reactor．What is the volume of each of the two reactors necessary to achieve 90% overall conversion of the entering species A？（14\％）What is the volume necessary to achieve 90% conversion in one CSTR？（8\％）

X	0.0	0.1	0.2	0.4	0.6	0.7	0.9
$\left(\mathrm{~F}_{\mathrm{A} 0} / \mathrm{r}_{\mathrm{A}}\right)\left(\mathrm{m}^{3}\right)$	0.89	1.09	1.33	2.05	3.54	5.06	8.0

5．At $25^{\circ} \mathrm{C}$ and atmospheric pressure the volume change of mixing of binary liquid mixtures of species 1 and 2 is given by the equation：

國立高雄大學 103 學年度研究所碩士班招生考試試題
科目：化工熱力學與化學反應 系所：化學工程及材料工程學系

工程
考試時間： 100 分鐘
（甲组）
本科原始成績：100 分

$$
\Delta V=x_{1} x_{2}\left[30 x_{1}+20 x_{2}\right]
$$

Where $\Delta \mathrm{V}$ is in $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$ ．At these conditions， $\mathrm{V}_{1}=110$ and $\mathrm{V}_{2}=90 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ ．Determine the partial molar volumes $\overline{V_{1}}$ and $\overline{V_{2}}$ in a mixture containing $40 \mathrm{~mol} \%$ of species 1 at the given conditions．（18\％）

