國立高雄大學 103 學年度研究所碩士班招生考試試題

系所:

科目:工程數學

土木與環境工程學系(土木工程 考試時間:100分鐘

是否使用計算機:是

本科原始成績:100分

Problem Set 1

Consider, as a simple structure, the column shown in Fig.1. The column remains straight until a certain value of P is reached, which we call the critical load or buckling load and which we denoted as P_{cr} . Euler beam theory tells us that the lateral deflection y(x) is governed by the boundary value problem

$$EIy'' + Py = 0, \ 0 < x < L \tag{1a}$$

$$y(0) = 0, y(L) = 0$$
 (1b)

where E is Young's modulus of the material and I is the cross section inertia.

(a) Show the nontrivial solution occurs for the

eigenvalue **2** – **P/EI**=
$$\pi^2/L^2$$
, $4\pi^2/L^2$, $9\pi^2/L^2$,...(15%)

(b) Find the buckling load P_{cr} using the smallest eignevalue (10%)

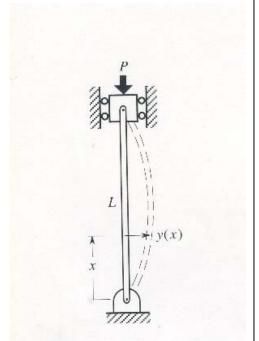


Figure 1. Column buckling.

Problem Set 2

Consider the ordinary differential equation shown below:

$$y(x)'' - 6y'(x) + 9y = 0$$
 (2)

- (a) Show $y = e^{3x}$ is one solution (5%).
- (b) Use the change of variable $y(x) = e^{3x}u(x)$ to find the other solution (15%),
- (c) Find the general solution (5%).

國立高雄大學 103 學年度研究所碩士班招生考試試題

系所:

科目:工程數學

土木與環境工程學系(土木工程 是否使用計算機:是 考試時間:100分鐘

本科原始成績:100分

Problem Set 3

The following system of linear equations has four unknowns, x_1, x_2, x_3 , and x_4

$$3x_1 + 2x_2 + 2x_3 - 5x_4 = 8$$

$$2x_1 + 5x_2 + 5x_3 - 18x_4 = 9$$

$$4x_1 - x_2 - x_3 + 8x_4 = 7$$

(a) Determine the ranks of the matrix of the coefficient A, and the augmented matrix B.(10%)

(b) How many linear independent row vectors do A have?(5%)

(c) Find the relationship between x_1, x_2, x_3 , and x_4 if there are any. (10%)

Problem Set 4

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \text{ and } V_1, V_2, V_3, \text{ and } V_4 \text{ are the four distinct eigenvectors of A.}$$

$$V_{1} = \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix}, \quad V_{2} = \begin{bmatrix} 0\\-1\\0\\1 \end{bmatrix}, \quad V_{3} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad V_{4} = \begin{bmatrix} -1\\1\\-1\\1 \end{bmatrix}$$

(a) Determine the corresponding eigenvalues.(15%)

(b) Show the eigenvalue equation.(10%)