國立高雄大學 103 學年度研究所碩士班招生考試試題

考試時間:100分鐘 身份別:一般生、在職生 是否使用計算機:否

本科原始成績:100分鐘 本科原始成績:100分

Notations.

 $M_{m \times n}(\mathbb{R})$: the set of all $m \times n$ matrices with entries in \mathbb{R} .

 I_n : the identity matrix in $M_{n\times n}(\mathbb{R})$.

 A^T : the transpose of matrix A.

 $[T]^{\gamma}_{\beta}$: matrix representation of T relative to ordered bases β and γ .

- 1. (30 %) Determine "true" or "false" for the following statements. If true, prove it; if false, give a counterexample.
 - (a) If $A \in M_{n \times n}(\mathbb{R})$ is invertible, then A is diagonalizable.
 - (b) Two similar matrices have the same characteristic polynomial.
 - (c) Let $A \in M_{3\times 3}(\mathbb{R})$ satisfy $A^3 = A$, then A is diagonalizable.
 - (d) For $A \in M_{n \times n}(\mathbb{R})$, the equation $AX XA = I_n$ has a solution X in $M_{n \times n}(\mathbb{R})$.
 - (e) For $A, B \in M_{n \times n}(\mathbb{R})$, AB and BA have the same eigenvalues.
- 2. Let T be the linear operator on $M_{n\times n}(\mathbb{R})$ defined by $T(A)=A^T$.
 - (a) (10 %) Show that ± 1 are the only eigenvalues of T.
 - (b) (5 %) Find an ordered basis β for $M_{2\times 2}(\mathbb{R})$ such that $[T]^{\beta}_{\beta}$ is a diagonal matrix.
- 3. Let $Q \in M_{3\times 3}(\mathbb{R})$ be an invertible matrix and let $S = \{A \in M_{3\times 3}(\mathbb{R}) : AB = BA\}$, where

$$B = Q^{-1} \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array} \right] Q.$$

- (a) (5 %) Show that S is a subspace of $M_{3\times 3}(\mathbb{R})$.
- (b) (10 %) Find a basis for S.
- 4. Let A, B be in $M_{n \times n}(\mathbb{R})$.
 - (a) $(8 \%) \operatorname{rank}(A + B) \le \operatorname{rank}(A) + \operatorname{rank}(B)$.
 - (b) $(7 \%) \operatorname{rank}(A^T A) = \operatorname{rank}(AA^T) = \operatorname{rank}(A)$.

國立高雄大學 103 學年度研究所碩士班招生考試試題

身份別:一般生、在職生 是否使用計算機:否

本科原始成績:100分

5. (15 %) Let

$$A = \left[\begin{array}{rrr} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{array} \right].$$

Find an orthogonal matrix P such that P^TAP is a diagonal matrix.

6. (10 %) Let W_1 and W_2 be subspaces of a vector space V over \mathbb{R} such that $W_1 \cup W_2$ is also a subspace of V. Prove that $W_1 \subset W_2$ or $W_2 \subset W_1$.