第 3 節

第/頁,共/頁

- 1. A Schottky diode and a PN junction diode have cross-sectional areas of $A=5\times10^{-3}~\rm cm^2$. The reverse-saturation current densities at $T=300~\rm K$ of the Schottky diode and the PN junction diode are $2\times10^{-8}~\rm A/cm^2$, and $4\times10^{-12}~\rm A/cm^2$, respectively. A forward-bias current of 1 mA is required in each diode. (Assume Eg = 2 eV for the pn junction diode and $\varphi_{B0}=1$ V for the Schottky diode.)
 - (a) Determine the forward-bias voltage required across the Schottky diode. (15%)
 - (b) Determine the forward-bias voltage required across the PN junction diode. (10%)
- 2. For a semiconductor, Eg = 3 eV, $m_p^* = 5 m_n^*$, T = 300 K, and $n_i = 5 \times 10^6$ cm⁻³.
 - (a) Determine the position of the intrinsic Fermi energy level with respect to the center of the bandgap. (10%)
 - (b) Impurity atoms are added so that the Fermi energy level is 1 eV below the center of the bandgap. What is the concentration of impurity atoms added? (15%)
- 3. (30%) Explain the following items:
 - (a) Einstein relation
 - (b) Exciton
 - (c) Effective mass
 - (d) Tunnel diode
 - (e) Fill factor for solar cell
 - (f) Annealing
- 4. (20%) For semiconductor, if it is possible that the Fermi level is above the bottom of the conduction band (E_c) or below the top of the valance band (E_v) . If "Yes", please explain why and present an example. If "No", please explain why and present an example.