第2節

第 1 頁,共2 頁

- 1. (a) Plot the small-signal hybrid- π model of the NMOS transistor. Label every component. (5%)
 - (b) Explain what causes channel-length modulation and how to lessen this non-ideal effect (5%)
- 2. Design a non-inverting amplifier, shown in Fig. P2, for the following specifications: closed-loop gain = 4, gain error = 1%, closed-loop bandwidth = 100MHz.
 - (a) Determine the required R_1 , R_2 , and open-loop gain and bandwidth of the op amp.(8%)
 - (b) Explain what happens if op amp exhibits an offset of 20mV. (2%)

Fig. P2

3. Calculate the voltage gain of the circuit shown in Fig. P3. M_1 is identical with M_2 , and given V_{DD} =3V, V_b =2V, V_t =0.6V, $\mu_n C_{OX}(W/L)$ =240 μ A/V², I_1 = 3 mA, R_D = 0.5 k Ω , and λ = 0. (10%)

Fig. P3

- 4. A CMOS op amp, shown in Fig. P4, is found to have a slew rate of 60 V/ μ s and a unity-gain bandwidth f_t of 100 MHz.
 - (a) Estimate the value of the overdrive voltage of Q₁ and Q₂. (5%)
 - (b) Given I_{D5} = 100 μ A, calculate the value of C_{C} . (5%)
 - (c) A resistance $R = 300\Omega$ is put in series with C_C to place the zero at infinite frequency. Calculate the required G_{m2} , which is the equivalent transconductance of the 2^{nd} stage. (5%)
 - (d) What is the maximum allowed capacitance at v_o to have a 75° phase margin? (5%)

第 2 節

第2頁,共2頁

5. Design of A Digital Logic Inverter (20%)

A digital logic inverter is shown in Fig. P5(a), and the transistor Q is fabricated with the following process parameters: $C_{ox}\mu_n$ = 100 μ A/V², λ = 0, and V_{tn} = 0.5V.

- (a) Please determine the W/L value of Q and resistance R_D to provide a 0.1V output low level (V_{OL}) and a static current of $100\mu A$. (4%)
- (b) As the circuit designated in (a), find the low-to-high propagation time (t_{PLH}) if the load capacitance C in Fig. P5(a) is 100fF and v_i has a zero fall time as shown in Fig. P5(b). (4%)
- (c) Please sketch the voltage transfer curve (VTC) of the circuit in Fig. P5(a) and use the VTC to explain the concept of noise margin. (4%)
- (d) Use the known parameters to derive the expressions of the output high level (V_{OH}), and the maximum value of input interpreted by the inverter as a logic 0 (V_{IL}). (4%)
- (e) How to improve the noise margin of the logic inverter shown in Fig. P5(a). (4%)

- 6. Assume that the circuit in Fig. P6 is designated to have a 200kΩ output resistance (R_{out}) and a bias current of 0.5mA with the following process parameters: $C_{ox}\mu_n = 100 \ \mu\text{A/V}^2$, $\lambda = 0.1\text{V}^{-1}$, and $V_{tn} = 0.4\text{V}$.
 - (a) If Q_1 and Q_2 are identical, find their W/L. (6%)
 - (b) Find the required value of V_{b1} . (5%)
 - (c) Complete a wide-swing current mirror circuit of Fig. P6 by exposing the possible circuitry in the Black Box and explain how the "wide-swing" is achieved. Note: wide-swing means that V_o is permitted to swing as low as two overdrive voltage (2 V_{OV}). (7%)

- 7. (a) Show the definition of slew rate (SR) of an operational amplifier. (5%)
 - (b) To produce a highest frequency of 1kHz and 10-V peak-to-peak sine wave at the output of an operational amplifier, what is the slew rate requirement of the operational amplifier? (7%)