國立中正大學101學年度碩士班招生考試試題

系所別:化學工程學系

第1頁,共2頁

科目:工程數學

第1節

 (25%) Classify the following differential equations, i.e. state their order, degree and linearity, and indicate the independent variable(s) and dependent variable(s) of the equations. DO NOT attempt to solve them.

(a)
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 10sinx$$
 (5%)

(b)
$$\frac{dQ}{dt} = e^Q - 1$$
 (5%)

(c)
$$cosx \left(\frac{dy}{dx}\right)^6 + sinx \left(\frac{d^2y}{dx^2}\right)^3 = 0$$
 (5%)

(d)
$$\left(\frac{d^5x}{dt^5}\right)^2 = x$$
 (5%)

(e)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 (5%)

- 2. (15%) A spring-mass-dashpot system. 2^{nd} order homogeneous linear ordinary differential equation (ODE) is defined as: y'' + ay' + by = 0, where coefficients a and b are constant.
 - (a) Find the characteristic equation of the system, (4%)
 - (b) If the roots $(r_1 \text{ and } r_2)$ of the characteristic equation are real and unequal $(r_1 \neq r_2)$, find the general solution, (4%)
 - (c) If the coefficients a=4 and b=3, y(0)=1, and y'(0)=0, find the particular solution, (4 %)
 - (d) and draw a curve (y v.s. t, 0 < t < 2) roughly representing the particular solution. (3%) (hint: try a solution of the function, $y = e^{rt}$, where y: displacement, t: time, and r: root in the case of a spring-mass-dashpot system)
- 3. (10%) Laplace transform. (a) Define the Laplace transform (or called Laplace integral) F(s) of the function f(t), $t \ge 0$ (5%) and (b) let $f(t) = e^{at}$ when $t \ge 0$, where a is a constant, find F(s). (5%)
- 4. (50%) This problem is regarding a heat transfer problem for a wire. A metal wire subjected to internal and external heating/cooling conditions so that the temperature of this wire is varied with respect to both time and space. Supposed this heat transfer problem can be described by the following PDE:

$$u_t = u_{xx} - \beta u - \alpha u_x + g(u,x)$$

with the initial and boundary conditions

IC:
$$u(x,0) = f(x)$$
,

BCs:
$$u(0,t) = a;$$
 $u_x(\pi,t) = b,$

where u(x,t) is the time evolution of the temperature distribution.

- (a) What is a PDE ? For this problem, what are the possible physical meanings of the term u_{xx} and $u_x(\pi,t)=b$. (10%)
- (b) Why we call certain needed contition as 'boundary condition'? (5%)

國立中正大學 101 學年度碩士班招生考試試題 系所別: 化學工程學系 科目: 工程數學

第1節

第2頁,共2頁

- (c) If the parameters $\alpha = 0$, $\beta = 0$ and g(u,x) = 0 in the PDE as well as a = b = 0 and $f(x) = \sin(x)e^{-x}$ in the initial and boundary conditions, what is the temperature profile when time goes to infinity, why?

 (10%)
- (d) If one of the parameter <u>g(u,x)</u> is <u>sin(3x)</u> and the other parameters remain the same, briefly describe how to solve this PDE. [You don't have to actually obtain the solution.]

 (15%)
- (e) It is well known that Laplace transform (LT) is a very convenient and powful tool to transform a hard problem into an easier one, rendering it a popular method to solve the ordinary/partial differential equations. If one follows the paramters in (d) and $g(u,x) = u^2$, please write down your opinions whether LT is a suitable tool to tackle this problem. If yes, why and how to do attack this problem? If no, what are the reasons? (10%)