Determine the vertical displacement of joint C of steel truss as shown in Fig. 1 by the principle of virtual work. Due to radiant heating, member AB is subjected to an increase in temperature of $\Delta T = +45^{\circ}C$, and member CD has been fabricated 4 mm too long. The cross section area of each member is $A=300~\mathrm{mm}^2$, the thermal expansion coefficient is $\alpha_{st}=12\times10^{-6}\,\mathrm{/^\circ}\,\mathrm{C}$, and Young's modulus is $E_{st} = 200 \text{ GPa} \cdot (20\%)$

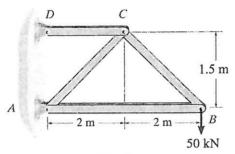
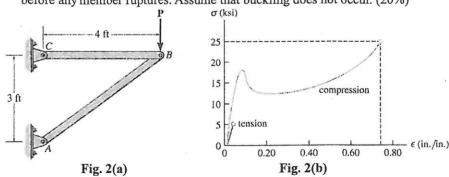
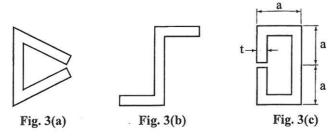




Fig. 1

The two bars, as shown in Fig. 2(a), are made of polystyrene, which has the stress-strain diagram as shown in Fig. 2(b). If the cross-sectional area of bar AB is 1.5 in² and BC is 4 in², determine the largest force P that can be supported before any member ruptures. Assume that buckling does not occur. (20%)

- There are three thin-walled members with cross sections as shown in Fig. 3.
 - (a) Please schematically plot the locations of their shear centers. (6%)
 - (b) Please determine the exact location of the shear center for the member shown in Fig. 3(c). (9%)

國立中正大學101學年度碩士班招生考試試題

系所別:機械工程學系-甲組

科目:材料力學

第3節

第2頁,共3頁

- 4. The isotropic solid shaft shown in Fig. 4 has a radius of R, Young's modulus of E, and shear modulus of G. The solid shaft is subjected to a torque of T, a moment of M, and an axial loading of P. The cross-section a-a is far away from the loads.
 - (a) Identify the position on the cross-section a-a, called point A, where the maximum stress occurs. (3%)
 - (b) Draw the corresponding stress state at point A. (4%)
 - (c) Describe how to measure the strains at point A induced by the loadings. (3%)
 - (d) Using the maximum-normal-stress theory, determine the maximum allowable principal stress in terms of R, T, M, and P. (10%)

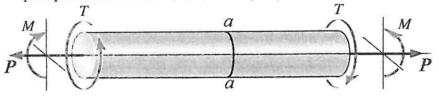


Fig. 4

- 5. The following beams have a moment of inertia of $I = 65 \times 10^{-6} \,\text{m}^4$ and a Young's modulus of $E = 200 \,\text{GPa}$.
 - (a) Determine the displacement at C of the beam (Fig. 5(a)) by the method of discontinuity functions. (10%)
 - (b) Determine the displacement at C of the beam (Fig. 5(b)) by the integration method. (9%)
 - (c) Based on the above solutions, determine the reactions at A and B of the beam (Fig. 5(c)) by the superposition method. (6%)

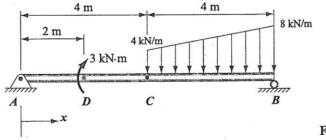
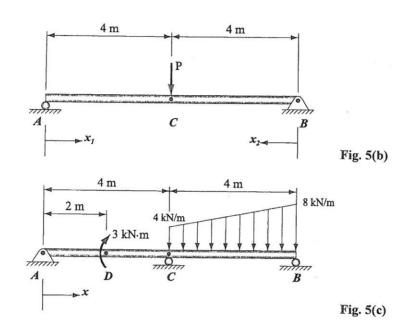



Fig. 5(a)

國立中正大學 101 學年度碩士班招生考試試題 系所別:機械工程學系-甲組 科目:材料力學

第3節

第3頁,共3頁

