£ E R L E A F R A A

B ¥ E K2 101 £
,5&»}}%{4-1% 'gq’gﬁ /]')-%1}% &i%&&,aﬂaéﬂ
4 . W T RT L . o sy S .
ENZivIE ST EMIRE s BR AKE HEHERER
WA TR L WBEN
% 18 % g #3 7
1 (12%) Fig.lis the flow chart and Fig.2 is the architectures of binary multiplier
/.1 (4%) Give the values of Q. (binary code)
1.2 (8 %) Give the second and fifth partial products of CAQ after shift right in
Table 1. (binary code)
Table 1
Multiplicand B = 10110
{Carry) (5 bitg) (5 bitg)
C A 3 P
Multiplier in Q 0 00000
Qo=1;add B
First partial product
Skift aight CAQ
Qo=1;addB
Second partiad product
Shift right C AQ
Qo =0 ; shift right CAQ
Qo =10 ; shift right CAQ
Qo=1:3dd B
Fifth partial product
Shift right CAQ
Z=1 if P=0
v 4 Multiplicand
¢} Initial state To
i Register B Ch:zicofor
f
Qo Cont.rol
T [TA<0 Cout Parallel P counte Unit
(P: ::g ‘ . adder counter
R . F N ?
— 3 7 o 1 .
P <=P- T2
Multiplier S
0 . . (start)
o) el C —yp-{ Register A p=————p=| Register Q
Qo *
C A<= A+B , C<=Cout) Product
I l Fig 2
T3 Shift right CAQ C<=0

. S
~C -

Fig.1

Bl 3 F E K2 101 £ & 48 4 3538 4 &£ X X4
Bl

) 19 S A2 g 4

(10%) Derive the correct floating-point representation for the decimal numbers
-13.25 using the 32-bit IEEE 754 floating-point standard and give the largest
positive number.

. (9%)Explain the following terms:

3.1 Addressing modes
3.2 DMA (Direct Memory Access)
3.3 Write back vs. Write through

(9%) A memory data register DR can transfer 32-bit words to M in a single
clock cycle. The data items to be stored can be 4, 8, 16, or 32 bits long, and
short items are always sign-extended to 32 bits for transmission to M. A 2-bit
flag S in the CPU is set to 00, 01, 10, or 11 to indicate a data size of 4, 8, 16, or
32 bits, respectively. Design an efficient logic circuit at the register level to
implement the sign extension.

. (10%) Calculate X x Y (X=101011, Y=100011)

5.1 By Robertson multiplication algorithm :
n—2
x=-2""x +> 2'x
i=0 |
5.2 By Booth’s multiplication algorithm.

(15%) Compare CISC and RISC processors in terms of instruction formats,
clock cycle time, clock cycles per instruction, performance, and power
consumption. Please explicitly state the reasons of each comparison.

(25%) Assume that there is no multiplication in the MIPS instruction set.
Please implement the function “unsigned int sum(unsigned int n)” which
returns '

the value of “1 +2+ ...+ n".

7.1 Write the C code with a while loop. (5%)

7.2 Write the corresponding MIPS code in 7.1. (7%)
7.3 Write the C code with recursive procedural calls. (5%)
- 7.4 Write the corresponding MIPS code in 7.3. (8%)

. (10%) Assume an instruction cache miss rate of 2% and a data cache miss rate

of 4%. If a machine has a CPI of 2 without any memory stalls and the miss
penalty is 40 cycles for all misses, determine how much faster a machine would
run with a perfect cache that never missed. Assume 36% of instructions are
loads/stores. (Assume that # is mapped to the argument register $a0.)

STEMTEE - BA A%E A8 ERE
WMIRLZL- @RENTH |
27 #3 7

B 3 F E K

BT
B4R

gl

101 2 == E 8 + 3 8 £ # R A A&
4 %%@ﬁ%ﬁm@
T HEMIREE - B A&%4
- HHELIE iYL

FE

% P 3 B ERES

‘%*Tﬁ“s

o

e

%18

3

23 % #£3 7

MIPS Instruction Set Quick Reference Recisters
' 0 zero | Always equal to zero
Jumps ANp Brancies (Note: One DELay SLor) 1 at | Assembler temporary; used by the assembler
B oFF18 PC += orr18* 2-3 | v0-vl | Return value from a function call
BAL orr18 Ra=PC+ 8, PC +¥ orr] 8% 4-7 | a0-a3 |First four parameters for a function call
BEQ Rs, R, oFr18 FRs= Rr, PC += orr18* 8-15 | t0-t7 | Temporary variables; need not be preserved
BEQZ Rs, oFr18 ¥ Rs =0, PC += orr18% 16-23 | s0-s7 | Function variables; must be preserved
BGEZ Rs, orrl8 ¥ Rs > 0, PC += orr18* 24-25 | t8-19 | T'wo more temporary variables
BGEZAL Rs, orrl8 Ra=PC +8; # Rs > 0, PC 4= orrl§* 26-27 | k0-k1 | Kernel use registers; may change unexpectedly
BGTZ Rs, orel8 ¥ Rs > 0, PC += orr18* 28 | ep | Global pointer
29 Stack point
BLEZ Rs, orF18 ¥ Rs <0, PC += orr18* b | 7ct POTTer
30 fp/s8 | Stack frame pointer or subroutine variable
BLTZ Rs, ofrl8 ¥ Rs <0, PC += orr18*
31 ra | Return address of the last subroutine call
BLTZAL Rs, orrl8 Ra=PC + 8; 7 Rs <0, PC += orr18* — ——
BNE Rs, R, oFr18 ¥ Rs # Rt, PC += orr18* ARITHMETIC OPERATIONS
BNEZ Rs, orr18 IF Rs # 0, PC += orr18* ADD Rob, Rs, Rt Ro=Rs+Rr (OVERFLOW TRAP)
J ADDR28 PC = PCj2s :: ADDR28? ADDI Rp, Rs, constl6 | RD=Rs + consT16% (OVERFLOW TRAP)
JAL ADDR28 Ra=PC + 8; PC = PCy;5 :: ADDR28? ADDIU Ro, Rs, constl6 | Rp = Rs + const16” ‘
JALR Rb, Rs Rp=PC+8; PC=Rs ADDU Rbp, Rs, Rt Rp=Rs+ Rr
JR Rs PC=Rs CLO Rb, Rs Rp = CountLeAapmGONES(RS)
CLZ Rp, Rs Rp = CountLEADINGZEROS(RS)
Conprtion TESTING AND CONDITIONAL MovE OPERATIONS LA Rb, LABEL Ro = ADDRESS(LABEL) '
MOVN Ro, Rs, Rt # Rr#0, Ro = Rs U Ro, 32 Rb = nv32
MOVZ Ro, Rs, Rr w Rr=0, Ro=Rs LUI Rop, consTl6 Rp = constl6 << 16
SLT Rp, Rs, Rt Rp=(Rs*<Rt9) 710 MOVE Rb, Rs Rp=Rs
SLTI Ro, Rs, constl6 | Rp = (Rs* < const16%?1:0 NEGU Rb, Rs Rp = -Rs
SLTIU Ro, Rs, constl6 | Rp = (Rs® <const162)?21:0 SERR Rbp, Rs Rp = Rsyet
SLTU Rp,Rs,Rr Ro=(Rs°<R1%?1:0 SEH® Rop, Rs Ro = Rsjs0*
S SUB Rb, Rs, RT Ro=Rs—Rr (OVERFLOW TRAP)
Deravrr C Cariive Convenrion (032) SUBU Ro,Rs, RT Ro=Rs—~Rr
St '
o a;‘; ;V::] al::zll(ggerxgs;t down. Loap anp Store OPERATIONS v
° Subtract from $sp to allocate local storage space. LB Ro, orr16(Rs) Rp = vem8(Rs + orr16%)*
* Restore $sp by adding the same amount at function exit. -
* The stack must be 8-byte aligned. LBU Rob, orr16(Rs) Ro = MEMB(Rs + orF16%)?
e Modi ly i Itiples of eight. T it
‘ odify $sp only in multiples of cigh LH Rb, orr16(Rs) Rp = mMemM16(Rs + oFr167)"
Function Parameters L . LHU Rp, orr16(Rs) Ro = mem16(Rs + orr16%)°
* Every parameter smaller than 32 bits is promoted to 32 bits.
° First four parameters are passed in registers $a0—$a3. LW Ro, orr16(Rs) Rb = MeM32(Rs + oFr16%)
® 64-bit parameters are passed in register pairs:
* Little-endian mode: $al:$a0 or $23:$a2. LWL Ro, orr16(Rs) | Ro = LoaoWornLerr(Rs + orr16%)
° Big-endian mode: $a0:$al or $a2:$a3. : : o
; = Rs + orrl6
¢ Every subsequent parameter is passed through the stack. LWR Ro, orr16(Rs) Ro = LoaoWoroRucur(orF167)
® First 16 bytes on the stack are not used. SB Rs, orF16(RT) MEMB(RT + oFF16) = Rszq
* Assuming $sp was not modified at function entry: N
¢ The 1* stack parameter is located at 16($sp). SH Rs, orr16(Rr) MeM16(RT + 0FF16%) = Rsis0
® The 2™ stack parameter is located at 20($sp), etc. _
* 64-bit parameters are 8-byte aligned. Sw Rs, orr16(R) MeM32(Rr + orF167) = Rs
SWL Rs, oFr16(RT) StoreWorDLEFT(RT + 0FF16%, Rs)
Return Values
* 32-bit and smaller values are returned in register $v0. SWR Rs, orF16(RT) StoreWorDRIGHT(RT + 0FF16%, Rs)
® 64-bit values are returned in registers $v0 and $v1:
* Little-endian mode: $v1:$v0. (| MEW Ro, orF16(Rs) | Ro = unasionep_MeM32(Rs + orr167)
* Big-endian mode: $v0:3v1. Usw Rs, orrl16(RT) uNaLIGNED_MEM32(RT + oFF16%) = Rs

