國立中正大學101學年度碩士班招生考試試題

電機工程學系-信號與媒體通訊組

系所別:通訊工程學系-通訊系統組

通訊工程學系-網路通訊甲組

第2節

第 頁,共2頁

科目:線性代數與機率

1. (20%)

The probability density function (pdf) and the characteristic function of a Cauchy random variable $\,X\,$ are given as

$$f_X(x) = \frac{a}{\pi(x^2 + a^2)}, -\infty < x < \infty$$
 and $\Phi_X(\omega) = e^{-a|\omega|}$, respectively. Now let X_1, X_2, \cdots, X_n be n

independent Cauchy random variables with identical pdf $f_X(x)$. Define $Y_n = \frac{1}{n}(X_1 + \dots + X_n) = \frac{1}{n}\sum_{i=1}^n X_i$.

- (a) Find the characteristic function of Y_{n} .
- (b) Find the pdf of Y_n .
- (c) Find $\lim_{n\to\infty} \Phi_{Y_n}(\omega)$ using part (a).
- (d) Will $\lim_{n\to\infty}\Phi_{Y_n}(\omega)$ approach the characteristic function of a Gaussian random variable? Please explain.

2. (10%)

Ordering a "deluxe" cake means you have three choices from 10 available toppings. Assuming that the order in which the toppings are selected does not matter.

- (a) How many combinations are possible if the toppings can be repeated?
- (b) How many combinations are possible if the toppings cannot be repeated?

3. (10%)

Random variables X and Y have a joint probability mass function (PMF) given by the following matrix:

$P_{X,Y}(x,y)$	y = -1	y = 0	y = 1
x = -1	0	0.25	0
x = 1	0.25	0.25	0.25

- (a) Are X and Y independent? Please explain your answer.
- (b) Are X and Y uncorrelated? Please explain your answer.

4. (10%)

Let $\, X \,$ be a continuous random variable with probability density function (pdf) :

$$f_X(x) = e^{-\pi x^2}, -\infty < x < \infty.$$

- (a) Find the expected value of X.
- (b) Find the variance of X.

國立中正大學101學年度碩士班招生考試試題

電機工程學系-信號與媒體通訊組

系所別:通訊工程學系-通訊系統組

通訊工程學系-網路通訊甲組

第2節

第2頁,共2頁

科目:線性代數與機率

5. There are three recursive functions

$$x_n = x_{n-1} + 0.5 y_{n-1}$$
$$y_n = z_{n-1} + 0.5 y_{n-1}$$
$$z_n = 0$$

where n is a positive integer. These relationships can be hold in the condition

$$x_n + y_n + z_n = 1$$
 (*n* is a non-negative integer).

Let $A^{(n)} = [x_n y_n z_n]^T$ be the *n*-th power of the matrix A.

- (a) (5 %) Write these recursive equations in power form of matrix A with a coefficient matrix C.
- (b) (5 %) Find the rank of *C*.
- (c) (15 %) Find the eigenvalues and corresponding eigenvectors of C.
- (d) (5%) Calculate the values of x_n , y_n , and z_n with the skill of "Diagonalization" as n approaches infinity.

6. If
$$p = \sum_{i=0}^{4} a_i x^i$$
 and $q = \sum_{i=0}^{4} b_i x^i$ are any vectors in P_4 , then $\langle p, q \rangle = \sum_{i=0}^{4} a_i b_i$ is an

inner product in P_4 . Let V be the subspace of P_4 spanned by the vectors

$$p_{1} = 2 + 2x - x^{2} + x^{4},$$

$$p_{2} = -1 - x + 2x^{2} - 3x^{3} + x^{4},$$

$$p_{3} = 1 + x - 2x^{2} - x^{4},$$

$$p_{4} = x^{2} + x^{3} + x^{4}.$$

- (a) (5 %) Find the orthogonal complement of V.
- (b) (5 %) Find a subset of $\{p_i | i = 1,2,3,4\}$ to be a basis of V.

7. Let
$$M = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ -1 & -1 & 4 & 4 \\ 1 & 2 & -2 & -3 \end{bmatrix}$$

- (a) (5 %) Show the determinant of M.
- (b) (5 %) Calculate

$$\det\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & -1 & 4 & 4 \\ 1 & 2 & -2 & -3 \\ 4 & 4 & 4 & 4 \end{bmatrix} + \det\begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 4 & 4 & 4 \\ -2 & -2 & 3 & 3 \\ 2 & 3 & -1 & -2 \end{bmatrix}.$$