第1節

第1頁,共1頁

- 1. In Fig. 1, find R_L for maximum power transfer and the maximum power that can be transferred to the load. [20%]
- 2. Determine I_1 , I_2 , V_1 and V_2 in the network drawn in Fig. 2. [20%]
- 3. Determine $G(j\omega)$ if its magnitude characteristic is shown in Fig. 3. [10%]
- 4. For the circuit shown in Fig. 4, find the output voltage $v_o(t)$, t > 0. Assume that the circuit has reached steady state at t = 0 . [20%]
- 5. Design an op-amp based circuit to produce the following function: $V_o = 10V_1 6V_2$. [15%]
- 6. In a balanced three-phase system, the source has an abc-phase sequence and is connected in wye. There are two parallel wye-connected loads. The line impedance connecting the source to the loads is $0.2 + j0.1 \Omega$. The phase impedance of load 1 and load 2 is $3 + j3 \Omega$ and $8 + j10 \Omega$, respectively. If the current in the a phase of load 1 is $I_{AN_1} = 12 \angle 20^\circ$ A rms. Find the phase voltages in the source. [15%]

Fig. 4