國立中正大學 101 學年度碩士班招生考試試題系所別:電機工程學系-電力與電能處理甲組 科目:控制系統

第1節

第一頁,共工頁

- 1. (20 %) The block diagram of a feedback control system is shown in Fig. 1.
 - (a) The controller with the transfer function H(s) is for the reduction of the effect of the noise N(s). Find H(s) so that the output Y(s) is totally independent of N(s).
 - (b) If the maximum overshoot of the unit-step input and the peak time are 20 % and 0.1 sec, respectively. Find the gains K_1 and K_2 when H(s) is as determined in part (a).

Fig. 1

2. (30 %) The transfer function of a unity feedback control system is

$$G(s) = \frac{K}{s(s+5)(s+10)}$$

- (a) Construct the root loci for $K \ge 0$.
- (b) Using the Nyquist criterion, determine the range of K such that the closed-loop system is stable.
- (c) Find the value of K so that the gain margin of the system is 20 dB.
- 3. (20 %) Given the system of Fig. 2, with

$$G_p(s) = \frac{1}{s(s+5)^2}$$
 and $G_c(s) = K \frac{I + \alpha Ts}{I + Ts}$.

Design the phase-lag compensator $G_c(s)$ for the system such that the steady state error to unit ramp input is less than 10% and the phase margin is greater than 70°.

Fig. 2

國立中正大學 101 學年度碩士班招生考試試題系所別:電機工程學系-電力與電能處理甲組 科目:控制系統

第1節

第七頁,共七頁

- 4. (30 %) Fig. 3 shows an RLC circuit.
 - (a) Find the state equation for the circuit when v(t) is an input, i(t) is an output, and capacitor voltage and the inductor current are the state variables.
 - (b) Find the condition that the system is controllable and observable.
 - (c) Find the state-transition matrix $\phi(t)$ and the characteristic equation for the system.

Fig. 3