编號:	164	國立成功大學103學年度碩士班招生考試試題	共之頁,第 / 頁		
系所組织	別: 生物	醫學工程學系甲組			
考試科	目: 材料	力學	考試日期:0222,節次:2		
※ 考生	請注意:	本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙」	上作答者,不予計分。		
 2014 Biomedical Engineering Master Entrance Exam — Mechanics of Materials (不可用計算機) 言子算 通 20 分 1. A brass bar of length 2.25 m with a square cross section of 90 mm on each side is subjected to an axial tensile force of 1500 kN (see figure). Assume that E = 110 GPa and Poisson's ratio: v= 0.34. Determine the increase in volume (and ratio) of the bar. 90 mm 90 mm 					

2. The simple beam AB shown in the figure supports a concentrated load and a segment of uniform load. Draw the shear-force and bending-moment diagrams for this beam.

3. A railroad tie (or *sleeper*) is subjected to two rail loads, each of magnitude P = 175 kN, acting as shown in the figure. The reaction of the ballast is assumed to be uniformly distributed over the length of the tie, which has cross-sectional dimensions b = 300 mm and h = 250 mm. Calculate the maximum bending stress σ_{max} in the tie due to the loads P, assuming the distance L = 1500 mm and the overhang length a = 500 mm.

(背面仍有題目,請繼續作答)

编號:	164	國立成功大學103學年度碩士班招生考試試題	共2页,	第2頁
系所組別	: 生物醫學工程學:	系甲組		
考試科目	: 材料力學		考試日期:0222,	節次:2

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

4. The surface of an airplane wing is subjected to *plane stress* with normal stresses σ_x and σ_y and shear stress τ_{xy} , as shown in the figure. At a counterclockwise angle $\theta = 32^{\circ}$ from the x axis, the normal stress is 37 MPa tension, and at an angle $\theta = 48^{\circ}$, it is 12 MPa compression. If the stress σ_x equals 110 MPa tension, what are the stresses σ_y and τ_{xy} ?

$$\sigma_{x1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos(2\theta) + \tau_{xy} \sin(2\theta)$$

Hint:

5. A uniformly loaded steel wide-flange beam with simple supports has a downward deflection of 10 mm at the midpoint and angles of rotation equal to 0.01 radians at the ends. <u>Calculate the height *h* of the</u> <u>beam</u> if the maximum bending stress is 90 MPa and the modulus of elasticity is 200 GPa.

$$\delta = \delta_{\max} = \frac{5qL^4}{384EI} \quad \theta = \theta_A = \frac{qL^3}{24EI}$$

Hint: