系所組別：生物㙠學工程學系甲組

考試科目：材料力學
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

2014 Biomedical Engineering Master Entrance Exam－Mechanics of Materials（不可用計算機）

計算題：每題20分1．A brass bar of length 2.25 m with a square cross section of 90 mm on each side is subjected to an axial tensile force of 1500 kN （see figure）．Assume that $E=110 \mathrm{GPa}$ and Poisson＇s ratio：$v=0.34$ ． Determine the increase in volume（and ratio）of the bar．

2．The simple beam $A B$ shown in the figure supports a concentrated load and a segment of uniform load．Draw the shear－force and bending－moment diagrams for this beam．

3．A railroad tie（or sleeper）is subjected to two rail loads，each of magnitude $P=175 \mathrm{kN}$ ，acting as shown in the figure．The reaction of the ballast is assumed to be uniformly distributed over the length of the tie，which has cross－sectional dimensions $b=300 \mathrm{~mm}$ and $\mathrm{h}=250 \mathrm{~mm}$ ．Calculate the maximum bending stress $\sigma_{\max }$ in the tie due to the loads P ，assuming the distance $L=1500 \mathrm{~mm}$ and the overhang length $a=500 \mathrm{~mm}$ ．

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

4．The surface of an airplane wing is subjected to plane stress with normal stresses σ_{x} and σ_{y} and shear stress $\tau_{x y}$ ，as shown in the figure．At a counterclockwise angle $\theta=32^{\circ}$ from the x axis，the normal stress is 37 MPa tension，and at an angle $\theta=48^{\circ}$ ，it is 12 MPa compression．If the stress σ_{x} equals 110 MPa tension，what are the stresses σ_{y} and $\tau_{x y}$ ？

$$
\sigma_{x 1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos (2 \theta)+\tau_{x y} \sin (2 \theta)
$$

5．A uniformly loaded steel wide－flange beam with simple supports has a downward deflection of 10 mm at the midpoint and angles of rotation equal to 0.01 radians at the ends．Calculate the height h of the beam if the maximum bending stress is 90 MPa and the modulus of elasticity is 200 GPa ．

$$
\text { Hint: } \delta=\delta_{\max }=\frac{5 q L^{4}}{384 E I} \quad \theta=\theta_{A}=\frac{q L^{3}}{24 E I}
$$

