※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．（10\％）Given $A=\left[\begin{array}{cc}1-p & q \\ p & 1-q\end{array}\right], 0<p, q<1$ ，find A^{n} ．
2．（10\％）Given $\mathrm{A}=\mathrm{LU}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -2 & 1\end{array}\right]\left[\begin{array}{cccc}2 & 1 & 0 & 2 \\ 0 & 0 & m & m \\ 0 & 0 & m & m^{2}\end{array}\right], m \geq 0, m \in Z$
（a）Please find the rank of A．（5\％）
（b）Do A and U have the same nullspace？Please explain it．（5\％）
3．（30\％）$A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ ，with real numbers a, b, c, d, e, f, g, h, and i and eigenvalue and eigenvector pairs
$\left(1,\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left(-2,\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left(-3,\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)\right.\right.$
（a）Check if matrix A is singular，orthogonal，or positive definite，or not belonging to the above classes．（5\％）
（b）Find $\lim _{n \rightarrow \infty}\left(A^{-1}\right)^{n} \quad(5 \%)$
（c）Let $\mathbf{x}=\left[\begin{array}{l}p \\ q \\ r\end{array}\right], p, q, r \in$ real number be a unit vector，what is the maximum value of $\|A \mathbf{x}\|$
（d）Let $\mathbf{x}=\left[\begin{array}{l}p \\ q \\ r\end{array}\right], p, q, r \in$ real number be a unit vector，what is the minimum value of $\mathbf{x}^{T} A \mathbf{x}$
（e）What is the determinant of $3 A+I$ ？I is the identity matrix．（5\％）
（f）What is the column space of $A+3 I$ ？I is the identity matrix．（5\％）
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

4．(20%) Determine whether the given differential equation is exact，If it is exact，solve it，if not，explain why）
（a）．$\left(2 y-\frac{1}{x}+\cos 3 x\right) \frac{d y}{d x}+\frac{y}{x^{2}}-4 x^{3}+3 y \sin x=0$
（b）． $3 x^{2} y d x+\left(x^{3}-5\right) d y=0$

5．(10%) Solve the given differential equation by undetermined coefficients $y^{\prime \prime}+4 y=6 \sin (x) \cos (x)$ ．

6．（10\％）Find the particular solution of the given high－order differential equation．

$$
2 \frac{d^{5} y}{d x^{5}}-7 \frac{d^{4} y}{d x^{4}}+12 \frac{d^{3} y}{d x^{3}}+8 \frac{d^{2} y}{d x^{2}}=e^{x}\left(1+e^{x}\left(1+e^{x}\left(1+e^{x}\right)\right)\right)
$$

7．（10\％）$y^{\prime \prime}+y=f(t)$ ，where $f(t)=\left\{\begin{array}{ll}1, & 0 \leq t<\frac{\pi}{2} \\ \sin t, & t \geq \frac{\pi}{2}\end{array} \quad y(0)=1, \quad y^{\prime}(0)=0 \quad\right.$ Solve $y(t)$

